1、下列是方程的解的是( )
A.
B.
C.
D.
2、在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.下列结论中:①∠C=72°;②BD是△ABC的中线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.正确的序号有( )
A.①③④
B.①④⑤
C.①②⑤
D.②④⑤
3、若将方程化为
,则
的值为( )
A.2
B.3
C.4
D.8
4、对于抛物线y=-2(x+1)2+3,下列结论:①抛物线开口向下;②对称轴为直线x=1;③顶点坐标是(-1,3);④当x>1时,y随x的增大而减小,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
5、有两个人患了流行性感冒,经过两轮传染后共有392人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )
A.14
B.15
C.13
D.12
6、一元二次方程x2﹣x=0的解是( )
A.x1=0,x2=1
B.x1=x2=1
C.x1=0,x2=﹣1
D.x1=1,x2=﹣1
7、不等式2x—4≤0的解集在数轴上表示为( )
A.
B.
C.
D.
8、下列方程组中,是二元一次方程组的有( )
A. 1个 B. 2个 C. 3个 D. 4个
9、如果a﹣b=2,那么代数式(
﹣b)•
的值为( )
A.
B.2
C.3
D.4
10、上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去 参观,两人恰好选择同一古迹 景点的概率是( )
A. B.
C.
D.
11、当x_______时,分式无意义,当x=_________时,分式
的值是0.
12、函数y=的自变量x的取值范围为_____.
13、已知一次函数的图象为直线l,下列结论:①直线l过定点
;②若直线l上有两点
和
,且
,则
;③若直线l平行于直线
,则直线l与y轴交于点
;④若
,则关于x的不等式
的解集是
.其中正确的是________.
14、四边形内接于⊙
,若
,则
______
.
15、计算:=___.
16、如果二元二次方程组的解适合方程3x+y=-8,则k=________.
17、如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.
(1)若∠A=48°,求∠OCE的度数;
(2)若CD=4,AE=2,求圆O的半径.
18、已知关于的二元一次方程组
的解
互为相反数,求
的值.
19、计算:
(1);
(2).
20、列方程或方程组解应用题:
“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.
21、如图,四边形ABCD是的内接四边形,DB=DC求证:∠CAD=∠EAD..
22、“一村一品,绽放致富梦”,泰顺县恩代洋村因猕猴桃被入选全国“一村一品”示范村镇.为更新果树品种,恩代洋村某果农计划购进、
、
三种果树苗木栽植培育.已知
种果苗每捆比
种果苗每捆多10元,
种果苗每捆30元,购买50捆
种果苗所花钱比购买60捆
种果苗的钱多100元.(每种果苗按整捆购买,且每捆果苗数相同)
(1)、
种果苗每捆分别需要多少钱;
(2)现批发商推出限时赠送优惠活动:购买一捆种果苗赠送一捆
种果苗.(最多赠送10捆
种果苗)
①若购买种果苗7捆、
种果苗5捆和
种果苗10捆,共需多少钱;
②若需购买种果苗10捆,预算资金为600元,在不超额的前提下,最多可以买多少捆果苗.求所有满足条件的方案,并指出哪种方案购买费用最少.(每种至少各1捆)
23、如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:OE=OF.
24、已知:,
,求
.
邮箱: 联系方式: