1、化简的结果是( )
A.2
B.
C.
D.
2、若 x 与 3 互为相反数,则|x+3|等于( )
A.0
B.1
C.2
D.3
3、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内¬错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )
A. ① B. ②和③ C. ④ D. ①和④
4、如果是关于x和y的二元一次方程ax+y=1的解,那么a的值是( )
A. 2 B. ﹣1 C. 1 D. ﹣2
5、已知三角形两个内角的差等于第三个内角,则它是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.以上都不对
6、下列运算正确的是( )
A. (﹣a2)2=﹣a4 B. a2+a2=a4 C. (x﹣0)0=0 D. 3﹣2=
7、如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④
=(1+
)2;其中正确的结论的个数( )
A.1个 B.2个 C.3个 D.4个
8、如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?( )
A.8 B.8 C.16 D.16
9、拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约45000000000千克,这个数据用科学记数法表示为( )
A.千克
B.千克
C.千克
D.千克
10、若单项式﹣2x4y与5x2myn是同类项,则( )
A.m=2,n=0
B.m=4,n=0
C.m=2,n=1
D.m=1,n=2
11、如图,用总长为8米的细木条在墙壁上钉出两个正方形框,若钉小正方形框用了细木条a米,其余用来钉大正方形框(不计损耗).设两个正方形框的边缘间距为x米,则x=___(用含a的式子表示).
12、一个箱子装有除颜色外都相同的3个白球,3个黄球,1个红球,现添加同种型号的2个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都相同,那么添加的球是_____________球.
13、在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是_____.
14、若关于的方程
是一元一次方程,则
________.
15、如图所示,A村、B村都在河边CD的同侧,已知AC=1km,BD=3km,CD=3km.若在河边CD上选点建水厂,则A村、B村到水厂的距离之和的最小值为___.
16、若a与b互为相反数,c与d互为倒数,则a+b+3cd=__.
17、如图,抛物线的图象经过点C
,顶点D的坐标为
,与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接,E为直线
上一点,当
时,则点E的坐标___.
(3)点F是y轴上一动点,点C关于x轴的对称点为H,当
取最小值时,在抛物线的对称轴上是否存在点Q,使
是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
18、(1)计算:;
(2)先化简,再求值:,其中
,
.
19、如图,一次函数y=kx+b与反比例函数(x<0)的图像相交于点A,点B,与x轴交于点C,其中点A(-1,3)和点B(-3,n).
(1)填空:m= ,n= ;
(2)求一次函数的解析式和AOB的面积.
(3)根据图象回答:当x为何值时,kx+b≤(请直接写出答案)
20、如图,以线段为直径作
,交射线
于点C,
平分
交
于点D,过点D作直线
于点E,交
的延长线于点F.连接
并延长交射线
于点M.
(1)求证:直线是
的切线;
(2)求证:;
(3)若,
,求图中阴影部分的面积.
21、如图,在中,
,
是
边上的中线.请用尺规作图法,求作
的内切圆.(保留作图痕迹,不写作法)
22、如图,在中,
,以
为直径的
分别交
于点
,点
在
的延长线上,连接
.
(1)求证:直线是
的切线;
(2)若,求
的面积.
23、请用几何图形“△”、“‖”、“ ”(一个三角形,两条平行线,一个半圆)作为构件,尽可能构思独特且有意义的图形,并写上一两句贴切,诙谐的解说词.(至少两幅图)
如:
24、解方程
(1); (2)
邮箱: 联系方式: