1、“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束元,则可列方程为( )
A. B.
C. D.
2、要使式子有意义,则字母x的取值范围是( )
A.x≥-2
B.x>-2
C.x≠-2
D.x>0
3、下列各命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补
B.若两个数的绝对值相等,则这两个数也相等
C.对顶角相等
D.如果那么
4、古代数学的“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC等于( )尺.
A.3.5
B.4
C.4.5
D.5
5、如图,直线EF分别交平行四边形ABCD边AB、CD于直E、F,将图形沿直线EF对折,点A、D分別落在点A′、D′处.若∠A=60°,AD=4,AB=8,当点A′落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+PA′的最小值( )
A.4+ B.8 C.6+
D.4
6、已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
7、若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y的图象上,则y1,y2,y3的大小关系是( )
A.y2<y1<y3
B.y3<y2<y1
C.y1<y2<y3
D.y3<y1<y2
8、若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是( )
A.-1 B.1 C.0 D.不能确定
9、已知点,
,
都在直线
上,则
,
,
的大小关系是( )
A. B.
C.
D.
10、面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是( )
A.82分
B.86分
C.85分
D.84分
11、到三角形三边距离相等的点叫做三角形的_________
12、若不等式组无解,则
的取值范围是_______.
13、若x的取值范围如图所示,则化简的结果是___________.
14、如图,将直角三角形纸片置于平面直角坐标系中,已知点
,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图
位置,第二次旋转至图
位置,···,则直角三角形纸片旋转
次后,其直角顶点与坐标轴原点的距离为__________.
15、如图,在中,
,
,作
于E,则
______;
______.
16、如图,在平面直角坐标系中,菱形
的顶点
的坐标为
,点
的坐标为
,点
在第一象限内,对角线
与
轴平行,直线
与
轴、
轴分别交于点
.将菱形
沿
轴向左平移
个单位.当点
落在
的内部时(不包括三角形的边),则
的取值范围是__________.
17、正比例函数经过点
,则
__________.
18、在函数y=﹣2x﹣5中,k= _________ ,b= _________ .
19、拱桥呈抛物线形,其函数关系式为,当拱桥下水位线在
位置时,水面宽为
,这时水面离桥拱顶端的高度是____________________.
20、如图, 在平行四边形ABCD中,CE⊥AB于点E.若∠D=65°,则∠BCE=______度.
21、已知满足
.
(1)求的值;
(2)判断以为边的三角形的形状.
22、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=40m,BC=30m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为800元,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?
23、初二年级为了了解学生上学的交通方式,现从初二年级学生中随机抽取了部分学生进行“我上学的交通方式”问卷调査,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调査中,一共抽样调査了 名学生;
(2)扇形统计图中骑车所在扇形的圆心角的度数为 °;
(3)补全条形统计图;
(4)若初二年级共有1500名学生,试估计初二年级学生中选择“步行”方式的人数.
24、某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用
(元)和蔬菜加工厂自己加工制作纸箱的费用
(元)关于
(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
25、如图所示,在平面直角坐标系中三个顶点的坐标分别是点A(﹣2,3),点B(﹣1,1),点C(0,2).
(1)作△ABC关于O成中心对称的△A1B1C1;
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;
(3)在x轴上求作点P,使PA1+PC2的值小并写出点P的坐标.(不写解答过程,直接写出结果)
邮箱: 联系方式: