1、下列各式的计算结果为37的是( )
A. (-3)2·(-3)5 B. (-32)·(-3)5 C. (-3)2·(-35) D. (-3)·(-3)6
2、如图,在三角形ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有( ).
(1)AD是三角形ABE的角平分线.(2)BE是三角形ABD边AD上的中线.(3)CH为三角形ACD边AD上的高.
A.1个 B.2个 C.3个 D.0个
3、下列各数中最大的是( )
A. B.1 C.
D.
4、在3.14,,
,π,
,0.1010010001…中,无理数有( )
A.1个
B.2个
C.3个
D.4个
5、下列说法中,错误的有( )
A.过两点有且只有一条直线 B.直线外一点到这条线段的垂线段叫点到直线的距离
C.两点之间,线段最短 D.垂线段最短
6、如图,AB∥CD,可以得到( )
A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4
7、一个样本中最大值是143,最小值是50,取组距为10,则可以分成( )
A.8组 B.9组 C.10组 D.11组
8、如图,与∠4是同旁内角的是( )
A.∠1
B.∠2
C.∠3
D.∠5
9、下列给出的线段长度不能与4,3
能构成三角形的是( )
A.4
B.3
C.2
D.1
10、以下结论正确的是( ).
A. 两个全等的图形一定成轴对称 B. 两个全等的图形一定是轴对称图形
C. 两个成轴对称的图形一定全等 D. 两个成轴对称的图形一定不全等
11、下列语句是命题的是( )
A.画直线 B.直线
C.如果直线,那么
D.点
与点
在线段
上
12、把方程改写成用含
的式子表示
的形式正确的是( )
A.
B.
C.
D.
13、若(x-m)²=x²+x+a , 则m=____________a=__________.
14、已知关于的方程
的解是负数,则
的取值范围是___________.
15、多项式加上一个单项式后,使它能成为一个多项式的平方,那么加上的单项式可以是_______.
16、设,则
_____________.
17、比较大小:_____3.
18、如图共有_______个三角形.
19、已知,
,则
的值为_____.
20、用一根长为20cm的铁丝围成一个长方形,若该长方形的一边长为xcm,面积为ycm2,则y与x之间的关系式为_____.
21、计算:
①计算:;
②用简便方法计算:98×102×10004;
③化简求值:,其中
.
④阅读例题的解答过程,并解答(1)、(2).
例:讲算
…………①
………………②
…………③
.
(1)例题求解过程中,第②步的变形依据是 ,第③步的变形依据是 .(填整式乘法公式的名称)
(2)用此方法计算: .
22、若am=an(a>0且a≠1,m,n是正整数),则m=n,利用上面结论解决问题:
(1)若2×8x×16x=222,求x的值;
(2)若(27x)2=36,求x的值.
23、每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息.根据此信息,解答下列问题:
1.快餐的成分:蛋白质,脂肪、矿物质、碳水化合物;
2.快餐总质量为;
3.脂肪所占的百分比为5%;
4.所含蛋白质质量是矿物质质量的4倍.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
24、先化简,再求值:
,其中
的值满足等式
.
25、为迎接食品安全检查,南通市计划对崇川区两类饭店全部进行改造.根据预算,共需资金1500万元,改造两个
类饭店和三个
类饭店共需资金325万元;改造一个
类饭店和四个
类饭店共需资金350万元.
(1)改造一个类饭店和一个
类饭店所需资金分别是多少万元?
(2)若需改造的类饭店不超过6个,则
类饭店至少有多少个?
(3)今年计划对两类饭店共7个进行改造,改造资金由市财政和区财政共同承担.若今年市财政拨付的改造资金不超过420万元;区财政投入的改造资金不少于68万元,其中区财政投入到
两类饭店的改造资金分别为每个8万元和12万元,请你通过计算求出有几种改造方案.
26、已知,求
的值.
邮箱: 联系方式: