1、解方程组时,消去
,得到的方程是( )
A. B.
C.
D.
2、以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3、不等式组的解集为( )
A. x≥2 B. x>3 C. 2≤x<3 D. x>2
4、为了美化城市,经统一规划,将一块正方形草坪的南北方向增加,东西方向减少
,则改造后得到长方形草坪与原正方形草坪面积相比,结果是( )
A.保持不变 B.增加了 C.增加了
D.减少了
5、关于x的方程有负整数解,则所有符合条件的整数m的和为( )
A.5
B.4
C.1
D.-1
6、张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,其他四个景点大致用坐标表示肯定错误的是( )
A.熊猫馆(1,4)
B.猴山(6,0)
C.百鸟园(5,-3)
D.驼峰(3,-2)
7、为了解我市市民2018年乘坐公交车的每人月均花费情况,相关部门随机调查了1000人的相关信息,并绘制了如图所示的频数直方图,根据图中提供的信息,有下列说法(每组值包括最低值,不包括最高值):①乘坐公交车的月均花费在60元~80元的人数最多;②月均花费在160元(含160元)以上的人数占所调查总人数的10%;③在所调查的1000人中,至少有一半以上的人的月均花费超过75元;④为了让市民享受更多的优惠,相关部门拟确定一个折扣标准,计划使30%左右的人获得优惠,那么可以是乘坐公交车的月均花费达到100元(含100元)以上的人享受折扣.
A.1个 B.2个 C.3个 D.4个
8、a.a6等于( )
A. 7a B. aa C. a7 D. a.a
9、若a<b,则下列式子一定成立的是( )
A. a+c>b+c B. a-c<b-c C. ac<bc D.
10、下列运算正确的是( )
A. a3•a3=2a3 B. (ab2)3=ab6
C. 3a•(﹣2a)2=12a3 D. (﹣x)4÷(﹣x)2=﹣x2
11、已知,
,
,比较
的大小( )
A. ; B.
; C.
; D.
;
12、下列说法中正确的是( )
A. 在同一平面内,两条直线的位置只有两种:相交和垂直
B. 有且只有一条直线垂直于已知直线
C. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行
D. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离
13、已知关于x,y的二元一次方程组,则x﹣y的值是_____.
14、节约用水无小事,小明将节约用水5记作
,那么浪费用水3
记作_____
.
15、求x的值:2(x﹣5)3=-128.
16、如图,a∥b,∠3=120°,∠2=60°,则∠1=_______.
17、在数轴上与1距离是的点,表示的实数为______.
18、如图,点A,C,F,B在同一直线上,CD平分, FG∥CD,若
的度数为70°,则
的度数为__________.
19、某电器专卖店策划五一促销活动,已知一款电视机的成本价为1800元/台,专卖店计划将其打七五折销售,同时还要保证每台至少获得10%的利润.若设该款电视机的标价为x元/台,则x满足的不等关系为________.
20、如图是一个圆环,外圆与内圆的半径分别是R和r.当R=5cm,r=3cm 时,则圆环(阴影部分)的面积为___cm2.(结果保留π)
21、如图,填空:
⑴∵(已知)
∴_____________( )
⑵∵(已知)
∴_____________( )
⑶∵(已知)
∴______________( )
22、在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(−3,1),C(2,−2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(−3,1),P(0,t).
(1)若A,B,P三点的“矩面积”为12,求点P的坐标;
(2)直接写出A,B,P三点的“矩面积”的最小值.
23、某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.
回答下列问题:
(1)这批水果总重量为 kg;
(2)请将条形图补充完整;
(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为 度.
24、计算:(1) ;(2)
;(3)
; (4)
.
25、因式分解
(1)2a3b﹣8ab3;
(2)﹣x3+2x2y﹣xy2.
26、已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.试说明:EF平分∠BED.
邮箱: 联系方式: