1、一元二次方程的一个根为2,则k的值是( )
A.1 B.-1 C.3 D.-3
2、若式子在实数范围内有意义,则x的取值范围是( )
A.x=1 B.x≥1 C.x>1 D.x<1
3、菱形具有而矩形不一定具有的性质是( )
A.对角线互相垂直
B.对角线互相平分
C.对角线相等
D.两组对边分别平行且相等
4、在⊙O中,同弦所对的圆周角( )
A.相等
B.互补
C.相等或互补
D.都不对
5、如图,直线与
相切于点A,
是
的两条弦,且
,若
的半径为
,
,则弦
的长为( )
A.
B.
C.4
D.
6、若a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,则a2﹣3b的值是( )
A. 3 B. ﹣15 C. ﹣3 D. 15
7、若反比例函数的图象经过第二、四象限,则
的值可能是( )
A.7
B.5
C.3
D.1
8、王老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质。甲:函数图象经过第二象限;乙:函数图象经过第四象限;丙:在每一个象限内,y值随x值的增大而增大。根据他们的描述,王老师给出的这个函数表达式可能是( )
A. y=-3x B. y= C. y=-
D. y=x2
9、如图,测量人员在高处测得
,
两点的俯角分别为
,
,若点
处的高度为20米,则
,
两点的距离为( )
A.20米 B.米 C.
米 D.
米
10、已知2a=3b(b≠0),则下列比例式成立的是( )
A. B.
C.
D.
11、如图,在矩形ABCD中,AB=6,M、N分别是AD、BC的中点,连接MN,则MN将矩形ABCD分成两个矩形,若矩形DMNC与矩形ABCD相似,则AD的长为________.
12、如图,在矩形中,
,点
在
边上,联结
.如果将
沿直线
翻折,点
恰好落在线段
上,那么
的值为_________.
13、已知是方程
的两个根,且满足
,则
___________.
14、在平面直角坐标系中,点与点
关于原点对称,则
________.
15、如图,在菱形中,
,
,以O为坐标原点,以
所在的直线为x轴建立平面直角坐标系,如图按以下步骤作图:①分别以点A,B为圆心,以大于
的长为半径作弧,两弧相交于点M,N;②作直线
交
于点P.则点P的坐标为_____________.
16、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a<0;②c<0;③a﹣b+c<0;④2a+b=0;⑤3a+c>0其中正确的结论有:_____________
17、如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为1cm/s;动点Q从点B开始沿BC边运动,速度为2cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?
18、在“阳光体育”活动时间,甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中丙同学的概率为 ;
(2)用画树状图或列表的方法,求恰好选中甲、乙两位同学进行比赛的概率.
19、如图,一次函数的图象与
轴、
轴分别交于
,
两点,与反比例函数
(
)的图象相交于
,
两点,
轴,垂足为
.
(1)求反比例函数的表达式,并求点
的坐标;
(2)点是反比例函数
图象上点
右侧的一个动点,是否存在这样的点
,过点
作
轴,垂足为
,使得以点
,
,
为顶点的三角形与
相似?若存在,请求出所有满足条件的点
坐标,若不存在,请说明理由?
20、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.
21、二次函数y=x2+6x﹣3配方后为y=(x+3)2+_____.
22、若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:
(1)矩形__________“奇妙四边形”(填“是”或“不是”);
(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;
(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”,作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.
23、如图,抛物线经过直线
与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D
(1)求此抛物线的解析式及D点坐标;
(2)若点M为在x轴上方的抛物线上的一个动点,当与
的面积相等,求此时点M的坐标.
24、某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶.经市场调查表明,每瓶售价每增加0.5元,日均销售量减少10瓶.
(1)当每瓶售价为11元时,日均销售量为 瓶;
(2)当每瓶售价为多少元时,所得日均总利润为700元?
(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
邮箱: 联系方式: