1、如图,点A在反比例函数y=(x>0)图象上,点B在y轴负半轴上,连结AB交x轴于点C,若△AOC的面积为1,则△BOC的面积为( )
A. B.
C.
D. 1
2、已知m,n是一元二次方程x2+2x-2022=0的两个实数根,则代数式m2+4m+2n的值等于( )
A.2024
B.2022
C.2020
D.2018
3、三个大小相同的等边三角形,
,
按如图所示方式摆放,点A,C,E在同一直线上,且点D,C,G在同一直线上,H为DE中点,以HB、HF为邻边作
,交AE于点M,N,若MN为8,则图中阴影部分的面积和为( )
A.
B.
C.18
D.36
4、已知m,n是方程x2+2x﹣1=0的两个实数根,则m2﹣2n+2015的值是( )
A.2021
B.2020
C.2019
D.2018
5、甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S乙2=0.035,则( )
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定
D.甲、乙两人成绩的稳定性不能比较
6、下列运算正确的是( )
A. B.
C. D.
7、下列运算正确的是( )
A.2a2b+3ab2=5a2b B.(﹣a2)3=﹣a5
C.(a﹣3)2=a2﹣9 D.a2•2a3=2a5
8、某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )
A.1.2×0.8x+2×0.9(60+x)=87
B.1.2×0.8x+2×0.9(60-x)=87
C.2×0.9x+1.2×0.8(60+x)=87
D.2×0.9x+1.2×0.8(60-x)=87
9、下列各点在双曲线上的是( )
A. (,
) B. (
,
) C. (
,
) D. (
,
)
10、我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是( )
A. 1.4(1+x)=4.5 B. 1.4(1+2x)=4.5
C. 1.4(1+x)2=4.5 D. 1.4(1+x)+1.4(1+x)2=4.5
11、舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约49950000000千克,这个数用科学记数法应表示为__________;
12、如图,过点作
轴的垂线交直线
于点
,过点
作直线
的垂线,交
轴于点
,过点
作
轴的垂线交直线
于点
…,这样依次下去,得到
,…,其面积分别记为
,…,则
为__________.
13、如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为 .
考点:相似三角形的判定与性质.
14、计算=__________.
15、近期,某商店某商品原价为每件元,连续两次降价
后售价为
元,则a的值是____.
16、如图,在平面直角坐标系中,四边形是平行四边形,且
,
,
,反比例函数
的图象经过点
,那么该反比例函数的解析式为_________.
17、阅读理解:对于任意正实数a,b,
,
∴,
∴a+b≥2,当且仅当a=b时,等号成立.
结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则
,
当且仅当a=b,a+b有最小值.
根据上述内容,回答下列问题:
(1)若x>0,只有当x= 时,有最小值 .
(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
(3)已知x>0,则自变量x为何值时,函数取到最大值,最大值为多少?
18、下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:
已知:如图,直线l和直线l外一点A
求作:直线AP,使得AP∥l
作法:如图
①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.
②连接AC,AB,延长BA到点D;
③作∠DAC的平分线AP.
所以直线AP就是所求作的直线
根据小星同学设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹)
(2)完成下面的证明
证明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依据)
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依据)
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依据)
19、如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)
20、A、B两地相距150km,甲、乙两人先后从A地出发向B地行驶,甲骑摩托车匀速行驶,乙开汽车且途中速度只改变一次,如图表示的是甲、乙两人之间的距离S关于时间t的函数图象(点F的实际意义是乙开汽车到达B地),请根据图象解答下列问题:
(1)求出甲的速度;
(2)求出乙前后两次的速度,并求出点E的坐标;
(3)当甲、乙两人相距10km时,求t的值.
21、定义:点关于原点的对称点为
,以
为边作等边
,则称点
为
的“等边对称点”;
(1)若,求点
的“等边对称点”的坐标;
(2)若点是双曲线
上动点,当点
的“等边对称点”点
在第四象限时,
①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;
②如图(2),已知点,
,点
是线段
上的动点,点
在
轴上,若以
、
、
、
这四个点为顶点的四边形是平行四边形时,求点
的纵坐标
的取值范围.
22、如图,在菱形中,
,点
分别在边
上,且
,
与
相交于点
.
(1)求证:;
(2)延长与
的延长线交于点
,求证
.
23、如图,已知四边形ABCD内接于⊙O,A是弧BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且弧BF=弧AD.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
24、如图,在平面直角坐标系中,抛物线y=a(x-1)2-4a(a>0)交x轴于A、B两点,点A在点B的左边,其顶点为点C,一条开口向下的抛物线经过A、B、D三点,其顶点D在x轴上方,且其纵坐标为3,连接AC、AD、CD.
(1)直接写出A、B两点的坐标;
(2)求经过A、B、D三点的抛物线所对应的函数表达式;
(3)当△ACD为等腰三角形时,求a的值;
(4)将线段AC绕点A旋转90°,若点C的对应点恰好落在(2)中的抛物线上,直接写出a的值.
邮箱: 联系方式: