1、下列命题中,正确的是( )
A. 平分弦的直线必垂直于这条弦 B. 垂直于弦的直线必过圆心
C. 平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧 D. 垂直平分弦的直线必平分这条弦所对的弧
2、如图,四边形是矩形,四边形
是正方形,点
在
轴的正半轴上,点
在
轴的正半轴上,点
在
上,点
在反比例函数
的图象上,
,则正方形
的面积为( )
A. B.
C.
D.
3、下列各式运算正确的是( )
A. 2=
B. 2
=6 C.
D.
4、已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线(x>0)经过点D,交BC的延长线于点E,且OB·AC=160,有下列四个结论:①双曲线的解析式为y=
(x>0);②点E的坐标是(4,8);③sin∠COA=
;④AC+OB=12
.其中正确的结论有( )
A.3个
B.2个
C.1个
D.0个
5、一辆慢车和一辆快车沿相同路线从A地到B地,所行驶的路程与时间的函数图象如图所示,下列说法正确的有( )
①快车追上慢车需6小时;
②慢车比快车早出发2小时;
③快车速度为46km/h;
④慢车速度为46km/h;
⑤AB两地相距828km;
A.2个 B.3个 C.4个 D.5个
6、如图,在△ABC中,∠C=36°,将△ABC绕点A逆时针旋转60°得到△AED,AD与BC交于点F,则∠AFC的度数为( )
A.84º B.80º C.60º D. 90º
7、如图,一次函数与反比例函数的图象交于A、B两点,则图中使反比例函数小于一次函数的自变量x的取值范围是( )
A. x<-1 B. x> 2 C. -1<x<0或x>2 D. x<-1或0<x<2
8、如图,是
的直径,点
,
在
上,点
是
的中点,过点
画
的切线,交
的延长线于点
,连接
.若
,则
的度数为( )
A.
B.
C.
D.
9、若,则
的值是( )
A.3 B.±3 C. D.±
10、计算正确的是( )
A.•a=
B.
=4
+
C.b÷
=
b D.
11、不等式组的解集为_________.
12、如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=4,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于_____.
13、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个.摸出一个球记下颜色后放回,再摸出一个球,则两次都摸到红球的概率是_____.
14、已知是关
的方程
的一个根,则
________.
15、已知二次函数y=ax2-bx+c的图象经过点(-1,0),且a,b,c均为非零实数,则的值是_____.
16、计算:____.
17、某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出第二组的频率是0.08,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)若该校九年级有600名学生,请估计该校九年级达到优秀的人数是多少?
18、如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在轴上.
(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2∶1,画出△OA1B1
(所画△OA1B1与△OAB在原点两侧);
(2)直接写出点A1、B1的坐标______________________.
(3)直接写出____________.
19、如图,平面直角坐标系中,直线y=与x轴交于点A,与双曲线
在第一象限内交于点B,BC⊥x轴于点C,OC=3AO.
(1)求双曲线的解析式;
(2)直接写出不等式的解集.
20、某高科技公司根据市场需求,计划生产A,B两种型号的医疗器械.其部分信息如下:
信息一:每台A型器械的售价为24万元,每台B型器械的售价为30万元,每台B型器械的生产成本比A型器械的生产成本多5万元.
信息二:若销售3台A型器械和5台B型器械,共获利37万元;
根据上述信息,解答下列问题:
(1)求每台A型器械、每台B型器械的生产成本各是多少万元?
(2)若A,B两种型号的医疗器械共生产80台,且该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元,且把所筹资金全部用于生产此两种医疗器械,根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0),每台B型医疗器械的售价不会改变,该公司应该如何生产可以获得最大利润?
21、教育行政部门规定初中生每天户外活动的平均时间不少于1小时,为了解学生户外活动的情况,随机地对部分学生进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请根据图中提供的信息解答下列问题:
(1)在这次调查中共调查的学生人数为 .
(2)若我市共有初中生约14000名,试估计我市符合教育行政部门规定的活动时间的学生数;
(3)试通过对抽样数据的分析计算,说明我市初中生参加户外活动的平均时间是否符合教育行政部门的要求?
22、如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;
(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标 .
(3)在x轴上有一点P使得PA+PB的值最小,直接写出点P的坐标 .
23、如图,是⊙O的直径,弦
,垂足为H,E为
上一点,过点E作⊙O的切线,分别交
的延长线于点F,G,连接
,交
于点P.
(1)求证:;
(2)连接,若
,求
的长.
24、列方程或方程组解应用题:
在练习100米跑步时,小丽为了帮助好朋友小云提高成绩,让小云先跑7.5秒后自己再跑,结果两人同时到达终点,这次练习中小丽的平均速度是小云的1.6倍,求小云这次练习中跑100米所用的时间.
邮箱: 联系方式: