1、下列说法正确的是( )
A. x=4是不等式2x>-8的一个解 B. x=-4是不等式2x>-8的解集
C. 不等式2x>-8的解集是x>4 D. 2x>-8的解集是x<-4
2、下列各式中,是最简二次根式的是( )
A. B.
C.
D.
3、一次函数y=-2x+1的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
4、下列性质中,菱形具有而平行四边形不具有的性质是( )
A. 对边平行且相等 B. 对角线互相平分 C. 对角互补 D. 对角线互相垂直
5、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为( )
尺码/厘米 | 25 | 25.5 | 26 | 26.5 | 27 |
购买量/双 | 2 | 4 | 2 | 1 | 1 |
A.25.5 26
B.26 25.5
C.26 26
D.25.5 25.5
6、根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是( )
A.1
B.
C.2
D.
7、如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
8、下列代数式是分式的是( )
A. B.
C.
D.
9、如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为( )
A.4.8 B.5 C.5.2 D.5.4
10、观察下列图形,是中心对称图形的是( )
A. B.
C. D.
11、一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡42张,则这个小组有______人.
12、如图,在中,
,
平分
,点
为
中点,则
_____.
13、一个不透明的口袋中有质地均匀大小相同的1个白球和2个黑球,从中任意摸出1个球,摸出白球的概率是______.
14、在共有15人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的____________(平均数、众数、中位数、方差)
15、图1是我国著名的“赵爽弦图”,它由四个全等的直角三角形所围成.将四个直角三角形的较短边(如)向外延长与此边长相等的长度得到点
,得到图2.已知正方形
与正方形
的面积分别为
和
,则阴影部分的面积为__________
.
16、△ABC的三边长分别为m2-1,2m,m2+1,则最大角为________.
17、在□ABCD中,∠B +∠D=200°,则∠A=__________°.
18、如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是________.
19、菱形是____________的平行四边形,因此它具有平行四边形的一切性质,此外菱形还具有的性质是:四条边_________,对角线_________,并且每条对角线_________.
20、武汉市某一天的最低气温为-6℃,最高气温是5℃,如果设这天气温为t℃,那么t应满足条件______ .
21、在▱ABCD和▱ADEF中,AB=8,AF=6,AB⊥AF,M、N分别是对角线AC、DF的中点,求MN的长.
22、解方程
(1); (2)
.
23、如图,在□ABCD中,O是对角线AC的中点,过O作AC的垂线与边AD、BC分别交于E、F。
(1)求证:四边形AFCE是菱形;
(2)若AF⊥BC,试猜想四边形AFCE是什么特殊四边形,并说明理由。
24、直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,连接AB,
(1)如图,已知AC、BC分别是∠BAP和∠ABM角的平分线,
①点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
②如图,将△ABC沿直线AB折叠,若点C落在直线PQ上,记作点C′,则∠ABO= °;如图,将△ABC沿直线AB折叠,若点C落在直线MN上,记作点C′′,则∠ABO= °.
(2)如图,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
25、(1)解不等式:并把解集表示在数轴上.
(2)解不等式组:,并求整数解.
邮箱: 联系方式: