1、用绳子围成周长为的矩形,记矩形的一边长为
,它的邻边长为
,矩形的面积为
.当
在一定范围内变化时,
和
都随
的变化而变化,则
与
,
与
满足的函数关系分别是( )
A.二次函数关系,一次函数关系
B.正比例函数关系,二次函数关系
C.二次函数关系,正比例函数关系
D.一次函数关系,二次函数关系
2、若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是( ).
A.x<﹣4或x>2
B.﹣4≤x≤2
C.x≤﹣4或x≥2
D.﹣4<x<2
3、将二次函数y=2x2﹣8x﹣1化成y=a(x﹣h)2+k的形式,结果为( )
A.y=2(x﹣2)2﹣1 B.y=2(x﹣4)2+32
C.y=2(x﹣2)2﹣9 D.y=2(x﹣4)2﹣33
4、如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1∶4的三视图中,其主视图的面积是( )
A. B.
C.
D.
5、下列图案中,轴对称图形是( )
6、对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )
A. 平移 B. 旋转 C. 轴对称 D. 位似
7、的绝对值是( )
A.
B.
C.
D.
8、实数在数轴上的对应点位置如图所示,把
按照从小到大的顺序排列,正确的是( ).
A. B.
C. D.
9、已知平行四边形,其对角线的交点为
,则下面说法正确的是( )
A.当时平行四边形
为矩形
B.当时平行四边形
为正方形
C.当时平行四边形
为菱形
D.当时平行四边形
为正方形
10、下列四个数中,最小的数是( )
A.
B.2
C.
D.4
11、若,则由表中的信息可知
与
之间的函数关系式是_______________.
-1 | 0 | 1 | |
|
| 1 | |
8 | 3 |
|
12、将△ABC在平面内绕点A旋转40°到△AB'C'的位置,使CC'∥AB.则∠CAB'的度数为_____.
13、如果点P(m-3,1)在反比例函数的图像上,那么m的值是_________ ;
14、如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.
15、羊年春晚在某网站取得了最高同时在线人数超14 000 000的惊人成绩,其中,14 000 000用科学记数法可表示为_______________________.
16、已知抛物线y=x2+x+k与x轴没有交点,则直线y=kx+1不经过第_____象限.
17、如图,一次函数与反比例函数
的图象交于
两点.
(1)求一次函数与反比例函数的解析式;
(2)根据已知条件,请直接写出不等式的解集;
(3)过点作
轴,垂足为
,求
的面积.
18、指出下列问题中的变量和常量:
某市的自来水价为4元/t,现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.
19、甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,观察图象解决下列问题:
(1)点B的坐标是_____,B点表示的实际意义是_____;
(2)求线段BC对应的函数关系式和D点坐标;
(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?
(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.
20、2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:
(1)该市今年2月~5月共成交商品住宅______套;
(2)请你补全条形统计图;
(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.
21、如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y = kx+b〔k< 0〕与x轴交于点A.
(1)求反比例函数的解析式;
(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.
22、如图,已知平行四边形ABCD.
(1)若M,N是BD上两点,且BM=DN,AC=2OM,求证:四边形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四边形ABCD的面积.
23、阅读、操作与探究:
小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:
如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为 .
请仿照小亮的方法解决下列问题:
(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;
(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .
24、如图,在菱形ABCD中,AD∥x轴,点A的坐标为(0,4),点B的坐标为(3,0).CD边所在直线y1=mx+n与x轴交于点C,与双曲线y2=(x<0)交于点D.
(1)求直线CD对应的函数解析式及k的值.
(2)当x<0时,使y1-y2≤0的自变量x的取值范围为 .
邮箱: 联系方式: