1、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
2、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
3、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
4、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
5、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
6、我国已成功发射的月球探测车上装有核电池提供动力。核电池是利用放射性同位素衰变放出载能粒子并将其能量转换为电能的装置。某核电池使用的核燃料为,一个静止的
发生一次α衰变生成一个新核,并放出一个γ光子。将该核反应放出的γ光子照射某金属,能放出最大动能为
的光电子。已知电子的质量为m,普朗克常量为h。则下列说法正确的是( )
A.新核的中子数为144
B.新核的比结合能小于核的比结合能
C.光电子的物质波的最大波长为
D.若不考虑γ光子的动量,α粒子的动能与新核的动能之比为117:2
7、如图所示的正四棱锥,底面为正方形
,其中
,a、b两点分别固定两个等量的异种点电荷,现将一带电荷量为
的正试探电荷从O点移到c点,此过程中电场力做功为
。选无穷远处的电势为零。则下列说法正确的是( )
A.a点固定的是负电荷
B.O点的电场强度方向平行于
C.c点的电势为
D.将电子由O点移动到d,电势能增加
8、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
9、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
10、如图甲所示,在粗糙绝缘水平面的A、C两处分别固定两个点电荷,A、C的位置坐标分别为-3L和2L,已知C处电荷的电荷量为4Q,图乙是AC连线之间的电势φ与位置坐标x的关系图像,图中x=0点为图线的最低点,x=-2L处的纵坐标,x=L处的纵坐标
,若在x=-2L的B点,由静止释放一个可视为质点的质量为m,电荷量为q的带电物块,物块随即向右运动,物块到达L处速度恰好为零,则下列说法正确的是( )
A.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
B.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
C.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
D.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
11、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
12、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
13、歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为。飞机的重力为G,使飞机实现节油巡航模式的最小推力是( )
A.G
B.
C.
D.
14、某压敏电阻的阻值随受压面所受压力的增大而减小。某兴趣小组利用该压敏电阻设计了判断电梯运行状态的装置,其电路如图甲所示。将压敏电阻平放在竖直电梯内,受压面朝上,在上面放一物体A,电梯静止时电压表示数为,在电梯由静止开始运行过程中,电压表的示数如图乙所示,则电梯运动情况为( )
A.匀加速下降
B.匀加速上升
C.加速下降且加速度在变大
D.加速上升且加速度在变小
15、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
16、2021年7月,我国将发射全球首颗搭载主动激光雷达二氧化碳探测的大气环境监测卫星。在航天领域中,悬绳卫星是一种新兴技术,它要求两颗卫星在不同轨道上同向运行,且两颗卫星与地心连线始终在一条直线上、如图所示,卫星乙的轨道半径为r,甲、乙两颗卫星的质量均为m,悬绳的长度为r,其重力不计,地球质量为M,引力常量为G,则两颗卫星间悬绳的张力为( )
A.
B.
C.
D.
17、图甲所示为家庭电路中的漏电保护器,其原理简图如图乙所示,变压器原线圈由火线和零线并绕而成,副线圈接有控制器,当副线圈ab端有电压时,控制器会控制脱扣开关断开,从而起保护作用。下列哪种情况扣开关会断开( )
A.用电器总功率过大
B.站在地面的人误触火线
C.双孔插座中两个线头相碰
D.站在绝缘凳上的人双手同时误触火线和零线
18、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
19、福岛第一核电站的核污水含铯、锶、氚等多种放射性物质,一旦排海将对太平洋造成长时间的污染。氚()有放射性,会发生β衰变并释放能量,其半衰期为12.43年,衰变方程为
,以下说法正确的是( )
A.的中子数为3
B.衰变前的质量与衰变后和
的总质量相等
C.自然界现存在的将在24.86年后衰变完毕
D.在不同化合物中的半衰期相同
20、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
21、一简谐横波沿x轴方向传播,在t=1s时刻的波形如图甲所示,M、N分别为平衡位置在xM=0.5m、xN=2m处的质点,图乙为质点N的振动图像。该波沿x轴___________(选填“正”或“负”)方向传播;该波的波速为___________m/s;从t=1s时刻起,质点M回到平衡位置所用的最短时间为___________s。
22、在一些古典家居装饰中,会看到大摆钟。 某大摆钟如图甲所示,可看成单摆,摆的振动图像如图乙所示则大摆钟的摆动周期为________s,摆长约为_________m。
23、下列说法正确的是________.(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)
A.空中的小雨滴呈球形是水的袭面张力作用的结果
B·彩色液晶显示器利用了液晶的光学性质具有各向异性的特点
C.一定质量的100℃的水变成100℃的水蒸气,其分子势能不变
D.干湿泡湿度汁的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果
E.第二类永动机不违反能量守恒定律,但违反了热力学第一定律
24、用内壁光滑的圆管制成如图所示轨道(ABC 为圆的一部分,CD 为斜直轨道,二者相切于 C 点),放置在竖直平面内。圆轨道中轴线的半径 R=1m,斜轨道 CD 与水平地面的夹角为θ=37°。现将直径略小于圆管直径的小球以一定速度从 A点射入圆管,欲使小球通过斜直轨道 CD 的时间最长,则小球到达圆轨道最高点的速度为______,进入斜直轨道 C 点时的速度为______m/s(g 取 10m/s2,sin37°=0.6, cos37°=0.8)。
25、如图所示,一列简谐横波沿x轴传播,实线为时刻的波形图,此时平衡位置在
的质点P向y轴正方向运动,虚线为经过0.7s后第一次出现的波形图,则波沿x轴_______(填“正”或“负”)方向传播,波的传播速度为________
。
26、某简谐横波在均匀介质中沿平面传播,波源位于O点,
时刻波的圆形波面分布如图(a),其中实线表示波峰,虚线表示与波峰相邻的波谷。A处质点的振动图像如图(b),规定z轴正方向垂直于
平面向外。该波的波长为______m;该波从P点传播到Q点的时间为______s(可用根式表示);M处质点起振后,
内经过的路程为______cm。
27、利用如图所示的装置可以探究变压器原、副线圈电压与匝数的关系:
(1)除图中所示器材外,还需要的器材有___________;
A.干电池 B.低压交流电源 C.直流电压表 D.多用电表
(2)下列说法正确的是___________;
A. 变压器工作时通过铁芯导电把电能由原线圈输送到副线圈
B.变压器工作时在原线圈上将电能转化成磁场能,在副线圈上将磁场能转化成电能,铁芯起到“传递”能量的作用
C. 理想变压器原、副线圈中的磁通量总是相同
D. 变压器副线圈上不接负载时,原线圈两端电压为零
(3)由于变压器工作时有能量损失,实验测得的原、副线圈的电压比应当___________(选填“大于”、“等于”或者“小于”)原、副线圈的匝数比
。
28、如图所示,体积为V0的导热性能良好的容器中充有一定质量的理想气体,室温为T0=300K,外界大气压强等于p0。有一光滑导热活塞C(活塞密封性好且体积忽略不计)将容器分成A、B两室,其重力大小等于p0S(S为活塞横截面积)。开始时,B室的体积是A室的3倍,B室内气体压强为外界大气压的2倍,B室容器顶部连接有一阀门K,可与大气相通。
①将阀门K打开,待系统稳定后,求此时A室的体积;
②在①问的前提下,再将A室内的气体加热到900K,求此时A室中气体压强。
29、1914年,在弗兰克一赫兹实验中,电子碰撞原子,原子吸收电子的动能从低能级跃迁到高能级。它为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持。如图甲所示,假设电子由静止开始经加速电场(可看作匀强电场)加速后,与静止氢原子碰撞,氢原子吸收能量后由基态向激发态跃迁(能级图如图乙所示)。已知电子的质量为,电荷量
,核外电子的第一轨道半径为
,氢原子的质量为
。
(1)基态和激发态的能级差为,试求加速电场的最小电压
;(用题中所给的物理量符号表示)
(2)氢原子量子数为n时的能级公式,电子轨道半径为
,求电子跃迁到第四轨道时,氢原子的能量、电子的动能和电子的电势能各多大?
30、如图所示,半径为R的圆柱形玻璃砖与墙壁相切与B点,AB为玻璃砖横截面的直径与墙壁垂直,点P位于O点正上方,点A处有一光源,沿AP的光线到达P点后恰好发生全反射。若另一条光线沿AM从M点射出玻璃砖,打到墙壁上的N点(未画出),已知∠BAM=30°,R=0.2m,求:
(i)玻璃的折射率n;
(2)点N到B点的距离。
31、如图所示,从A点以水平速度抛出质量
的小物块P(可视为质点),当物块P运动至
点时,恰好沿切线方向进入半径
、圆心角
的固定光滑圆弧轨道
,轨道最低点
与水平地面相切,
点右侧水平地面某处固定挡板上连接一水平轻质弹簧。物块P与水平地面间动摩擦因数
为某一定值,
取
,弹簧始终在弹性限度内,不计空气阻力。求:
(1)抛出点A距水平地面的高度;
(2)若小物块P第一次压缩弹簧被弹回后恰好能回到点,求弹簧压缩过程中的最大弹性势能
。
32、如图所示,高的平板C右端固定有竖直挡板,置于水平面上,平板上放置两小物块A、B,A、B间有一被压缩的劲度系数足够大的轻弹簧,A置于平板左端,B与C右端挡板的距离
,A、B、C的质量均为
。某时刻,将压缩的弹簧由静止释放,使A、B瞬间分离,A水平向左抛出,落地时距离C左端
,B运动到C右端与挡板发生弹性碰撞。已知B与C、C与水平面间的动摩擦因数均为
,取
,求:
(1)弹簧释放前瞬间的弹性势能;
(2)B与C发生弹性碰撞后瞬间C的速度大小;
(3)整个过程中C滑动的距离s。
邮箱: 联系方式: