1、如图所示为速冻食品加工厂生产和包装饺子的一道工序。将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。关于饺子在水平传送带上的运动,下列说法正确的是( )
A.饺子一直做匀加速运动
B.传送带的速度越快,饺子的加速度越大
C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量
D.传送带多消耗的电能等于饺子增加的动能
2、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
3、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
4、下列说法错误的是( )
A.根据F=可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力
B.力与力的作用时间的乘积叫做力的冲量,它反映了力的作用对时间的累积效应,是一个标量
C.动量定理的物理实质与牛顿第二定律是相同的,但有时用起来更方便
D.易碎品运输时要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力
5、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
6、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
7、关于下列四幅图的说法正确的是( )
A.甲图为氢原子的电子云示意图,由图可知电子在核外运动有确定的轨道
B.乙图为原子核的比结合能示意图,由图可知原子核中的平均核子质量比
的要大
C.丙图为链式反应示意图,氢弹爆炸属于该种核反应
D.丁图为氡的衰变图像,由图可知1g氡经过3.8天后还剩0.25g
8、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
9、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
10、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
11、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
12、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
13、网课期间,有同学在家里用投影仪上课。投影仪可以吊装在墙上,如图所示。投影仪质量为m,重力加速度为g,则吊杆对投影仪的作用力( )
A.方向左斜向上
B.方向右斜向上
C.大小大于mg
D.大小等于mg
14、如图所示,坐标系的第一、四象限的两块区域内分别存在垂直纸面向里、向外的匀强磁场,磁感应强度的大小均为1.0T,两块区域曲线边界的曲线方程为
(
)。现有一单匝矩形导线框
在拉力
的作用下,从图示位置开始沿x轴正方向以
的速度做匀速直线运动,已知导线框长为
、宽为
,总电阻值为
,开始时
边与
轴重合。则导线框穿过两块区域的整个过程拉力
做的功为( )
A.0.25J
B.0.375J
C.0.5J
D.0.75J
15、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
16、国家为节约电能,执行峰谷分时电价政策,引导用户错峰用电。为了解错峰用电的好处,建立如图所示的“电网仅为3户家庭供电”模型,3户各有功率P=3kW的用电器,采用两种方式用电:方式一为同时用电1小时,方式二为错开单独用电各1小时,两种方式用电时输电线路总电阻损耗的电能分别为ΔE1、ΔE2,若用户电压恒为220V,不计其它线路电阻,则( )
A.两种方式用电时,电网提供的总电能之比为1:1
B.两种方式用电时,变压器原线圈中的电流之比为1:3
C.
D.
17、如图所示,P、M、N为三个透明平板,M与P的夹角略小于N与P的夹角
,一束平行光垂直P的上表面入射,下列干涉条纹的图像可能正确的是( )
A.
B.
C.
D.
18、如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A.
B.
C.
D.
19、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
20、如图所示,天花板上悬挂的电风扇绕竖直轴匀速转动,竖直轴的延长线与水平地板的交点为O,扇叶外侧边缘转动的半径为R,距水平地板的高度为h。若电风扇转动过程中,某时刻扇叶外侧边缘脱落一小碎片,小碎片落地点到O点的距离为L,重力加速度为g,不计空气阻力,则电风扇转动的角速度为( )
A.
B.
C.
D.
21、中国探月工程“绕、落、回”三步走规划如期完成,同时实现了中国首次月球无人采样返回。月球土壤里存在大量,两个
原子可以发生核聚变产生
,该反应方程式为:
________
(填相应粒子的符号),
的比结合能________(选填“大于”或“小于”)
的比结合能。
22、如图所示,磁场的方向垂直于xy平面向里,磁感强度B沿y方向没有变化,沿x方向均匀增加,每经过1cm增加量为1.0×10-4T,有一个长L=20cm,宽h=10cm的不变形的矩形金属线圈,以v=20cm/s的速度沿x方向运动.则线圈中感应电动势E为_________V ,若线圈电阻R=0.02Ω,为保持线圈的匀速运动,需要外力大小为__________ N.
23、某同学为了估算阿伏伽德罗常数,查阅资料知道水分子的直径为4×10-10m,水的摩尔体积为1.8×10-5 m3/mol。若把水分子看成是一个挨一个的小球,则阿伏伽德罗常数的估算结果为_____ ( 保留两位有效位数)。把你的结果与化学课本中的阿伏伽德罗常数相比较,分析其差别的主要原因是:_____________。
24、如图,一根轻质细绳穿过水平圆形转盘中心处的光滑小孔O,一端与转盘上光滑凹槽内的小球A相连,另一端连接物体B,已知,转盘半径OC=50cm。开始转动时B与水平地面接触,OA=25cm,且OB>AC。小球A始终在凹槽内随着转台一起运动。当转台的角速度
时,此时B对地面的压力为________N。当转台转速增大到某一定值时,小球A滑到转台边缘且稳定在C点,此时小球的线速度为________m/s(g取10m/s2)。
25、如图,一质量为m、电荷量为q的带负电粒子A在一圆周上绕位于圆心O点的点电荷+Q做顺时针方向、半径为R的匀速圆周运动,则粒子A绕O点做圆周运动的周期为__;质量为m、电荷量为3q的带负电粒子B在同一圆周上同向运动,某时刻A、B所在半径间的夹角为。不计彼此间的万有引力以及A、B间的库仑力。已知静电力常量为k。则经过__时间A、B之间的距离第一次达到最大。
26、下列说法正确的是__________(填正确答案标号,选对1个得2分,选对2个得4分, 选对3个得5分;每选错1个扣3分,最低得分为0分)
A.悬浮在水中的花粉颗粒的布朗运动是永不停息的
B一定质量气体温度升高,所有气体分子的运动速率都增大
C彩色液晶显示器利用到液晶的光学性质具有各向异性的待点
D.根据能量守恒定律可知所有能量形式间的转化过程都是可逆的
E.钢针能够浮在水面上,是水分子表面张力作用的结果
27、某同学根据机械能守恒定律,设计实验探究弹簧的弹性势能与压缩量的关系。
(1)如图(a)所示,将轻质弹簧下端固定于铁架台,在上端的托盘中依次增加砝码,测量相应的弹簧长度,部分数据如下表,g取9.8 m/s2,由数据算得劲度系数k=______N/m(结果保留两位有效数字)。
砝码质量/g | 50 | 100 | 150 |
弹簧长度/cm | 8.62 | 7.63 | 6.66 |
(2)取下弹簧,将其一端固定于气垫导轨左侧,如图(b)所示,调整导轨使滑块自由滑动时,通过两个光电门的速度大小______。
(3)用滑块压缩弹簧,记录弹簧的压缩量x;释放滑块,记录滑块脱离弹簧后的速度v,释放滑块过程中,弹簧的弹性势能转化为______。
(4)重复(3)中的操作,得到v与x的关系如图(c),由图可知,v与x成正比关系。由上述实验可得结论:对同一根弹簧,弹性势能与弹簧的_______成正比。
28、宏观规律是由微观机制所决定的。从微观角度看,在没有外电场的作用下,导线中的自由电子如同理想气体分子一样做无规则的热运动,它们朝任何方向运动的概率都是一样的,则自由电子沿导线方向的速度平均值为零,宏观上不形成电流。如果导线中加了恒定的电场,自由电子的运动过程可做如下简化:自由电子在电场力的驱动下开始定向移动,然后与导线内可视为不动的粒子碰撞,碰撞后电子沿导线方向的定向移动的速度变为零,然后再加速、再碰撞……,在宏观上自由电子的定向移动就形成了电流。
(1)在一段长为L、横截面积为S的长直导线两端加上电压U。已知单位体积内的自由电子数为n,电子电荷量为e,电子质量为m,连续两次碰撞的时间间隔为t,仅在自由电子和导线内不动的粒子碰撞时才考虑它们之间的相互作用力。
①求导体中电场强度的大小E和自由电子定向移动时的加速度大小a;
②求在时间间隔t内自由电子定向移动速度的平均值,并根据电流的定义,从微观角度推导此时导线上的电流大小;
(2)自由电子与粒子的碰撞宏观上表现为导线的电阻,请利用上述模型推导电阻R的微观表达式,并据此解释导线的电阻率为什么与导线的材质和温度有关。
29、如图所示,真空中有一截面为等腰直角三角形的三棱镜,一单色光从边上的中点D射入三棱镜,已知三棱镜对此单色光的折射率为
,
。
(1)要使此单色光射到AB面上时恰好发生全反射,则求此时单色光在D点的入射角的正弦值;
(2)要使此单色光在D点折射后直接照射到面,则求单色光在D点的入射角
正弦值的取值范围。
30、图甲是离子注入系统,它是一种对半导体进行掺杂的方法,可以改变半导体材料的成份和性质。图乙是它的简化示意图,由离子源、加速器、质量分析器、磁偏转室和注入靶组成。初速度近似为0的正离子从离子源飘入加速器,加速后的成为高能离子,离子沿质量分析器的中轴线运动并从F点射出,然后垂直磁偏转室的边界从P点进入,离子在磁偏转室中速度方向偏转90°后垂直边界从Q点射出,最后垂直打到注入靶上。已知质量分析器的C、D两极板电势差为U,板长为L,板间距离为d;磁偏转室的圆心为O,O与P之间的距离为L,内部匀强磁场的磁感应强度为B;正离子的质量为m、电荷量为q,不考虑离子的重力及离子间的相互作用。
(1)求加速器A、B两极板的电势差和质量分析器内磁场的磁感应强度
;
(2)若每秒打到注入靶的离子数为,其中90%的离子进入注入靶中,10%的离子被反向弹回,弹回的速度大小为原来的一半,求注入靶受到的作用力大小;
(3)假设质量分析器两极板间电势差发生极小的波动,则离子在质量分析器中不再沿直线运动,但可近似看作是匀变速曲线运动。要使这些离子经磁偏转室后仍能全部会聚到一点,求P点与F点之间的距离。
31、如图,长L=1m的粗细均匀细管开口向上竖直放置,管内有一段高为h=4cm的水银柱,水银柱下密封了一定质量的理想气体,当环境温度为T1=301K,水银柱上端到管口的距离为d=10cm。已知大气压强p0=76cmHg,管内气体温度与环境温度相同。
(i)当环境温度变为T2=315K,求稳定后水银柱下端到管底的距离;
(ii)保持环境温度T2不变,让细管在竖直面内绕管底缓慢转动,直到细管水平。试通过计算判断管口是否有水银溢出。
32、如图所示,在真空中有一个折射率为n、半径为r的质地均匀的小球。细激光束在真空中沿直线BC传播,直线BC与小球球心O的距离为l(l<r),光束于小球体表面的C点经折射进入小球(小球成为光传播的介质),并于小球表面的D点(图中未标出)又经折射进入真空。设光在真空中传播的速度为c,求:
①光在C点发生折射的折射角的正弦值;
②细激光束在小球中传输的时间。
邮箱: 联系方式: