得到
  • 汉语词
  • 汉语典q
当前位置 :

2025年高考数学真题试卷(山西卷)

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、,则的值为( )

    A.   B.   C.   D.

     

  • 2、下列各命题正确的是( )

    A.终边相同的角一定相等

    B.第一象限角都是锐角

    C.轴上的角均可表示为

    D.是偶函数

  • 3、设函数的最小正周期为,且,则( )

    A. 单调递减   B. 单调递减

    C. 单调递增   D. 单调递增

     

  • 4、设函数,则曲线处的切线与两坐标轴围成的三角形面积为(       

    A.e

    B.

    C.

    D.

  • 5、过抛物线的焦点F作直线交抛物线于两点,若,则的值为(       

    A.4

    B.6

    C.8

    D.10

  • 6、在某样本的频率分布直方图中,共有5个小长方形,已知中间1个长方形的面积等于其他4个长方形面积之和的,若样本容量是100,则中间一组的频数为(       

    A.20

    B.30

    C.25

    D.35

  • 7、已知等差数列的前项和为,若,且,则当最大时的值为(   

    A.8

    B.9

    C.10

    D.16

  • 8、已知函数,且,则当时,的取值范围是

    A.   B.  

    C. D.

     

  • 9、设定点,动点满足条件,则动点的轨迹是

    A.双曲线

    B.双曲线一支

    C.不存在

    D.双曲线或线段或不存在

  • 10、不等式对任意都成立,则的取值

    范围为

    A. B. C. D.

  • 11、满足约束条件的最大值为(  

    A.4 B. C. D.

  • 12、的值为(   )

    A. B. C. D.

  • 13、已知集合,若中恰好含有个整数,则实数的取值范围是

    A.

    B.

    C.

    D.

  • 14、分析法是从要证明的结论出发,逐步寻求使结论成立的( )

    A. 充分条件   B. 必要条件   C. 充要条件   D. 等价条件

     

  • 15、在正四面体中,分别是的中点,则所成的角为(       

    A.

    B.

    C.

    D.

  • 16、等差数列项和为,则公差的值为( )

    A.2

    B.-3

    C.3

    D.4

  • 17、不等式的解集为

    A.   B.   C.   D.

     

  • 18、如果,且,那么下列不等式成立的是

    A.

    B.

    C.

    D.

  • 19、已知中,B等于(       

    A.

    B.

    C.

    D.

  • 20、如图,半径为1的半圆O与等边三角形ABC夹在两平行线之间,l与半圆相交于FG两点,与两边相交于ED两点,设弧FG的长为,若l平行移动到,则函数的图像大致是(     

    A.

    B.

    C.

    D.

二、填空题 (共6题,共 30分)
  • 21、若复数(是虚数单位)是纯虚数,则a=__________

  • 22、在复平面内,点对应的复数,则______

  • 23、已知正项等比数列的前n项和为,公比为q,则q=______

  • 24、设实数满足约束条件目标函数仅在点取最大值,则实数的取值范围为________.

     

  • 25、方程上有两个不等的实根,则实数的取值范围是__________

  • 26、若函数是定义在R上的奇函数,当时,的解析式是,则时,的解析式为 ________

三、解答题 (共6题,共 30分)
  • 27、已知等差数列满足,公比为正数的等比数列满足.

    (1)求数列的通项公式;

    (2)设,求数列的前项和.

  • 28、在各项均为正数等比数列中,前n,已知,且成等差数列.

    1)求数列的通公式;

    2)数列的通公式,数列的前n,求不等式的解集.

  • 29、在平面直角坐标系中,双曲线的参数方程为为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

    (1)若,设双曲线的一条渐近线与相交于两点,求

    (2)若,分别在上任取点,求的最小值.

  • 30、已知函数,(其中是自然对数的底数).

    (1)求函数的图象在处的切线方程;

    (2)记,若,试讨论上零点的个数.

    (参考数据:

  • 31、如图,在直三棱柱中,平面平面E的中点,.

    (1)证明:

    (2)求二面角的余弦值;

    (3)求点B到平面的距离.

  • 32、已知函数的图像过点

    (1)求实数m的值;

    (2)判断在区间上的单调性,并用定义证明;

查看答案
下载试卷
得分 160
题数 32

类型 高考真题
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
掌乐网(zle.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线掌乐网,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 掌乐网 zle.com 版权所有 闽ICP备18021446号-6