1、如图,将绕点A逆时针旋转至
的位置,连接
,若
,
,则
的度数为( )
A.25°
B.30°
C.28°
D.32°
2、已知∠A+∠B=90°,且cosA=,则cosB的值为( )
A. B.
C.
D.
3、如图,直线,将含
角的直角三角板的直角顶点放在直线
上,已知
,则
的度数为( )
A.
B.
C.
D.
4、某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:
根据统计图提供的信息,下列推断不合理的是( )
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超过300万人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳
5、如图,若抛物线与x轴的一个交点坐标为
,则抛物线与x轴的另一个交点坐标为( )
A.
B.
C.
D.
6、如图,在中,
平分
,D是
的中点
,
,
,则
的长为( )
A.1
B.
C.2
D.
7、下列图形一定相似的是( )
A. 两个矩形 B. 两个菱形
C. 两个等腰直角三角形 D. 两个直角三角形
8、已知二次函数,当
时,y随x的增大而减小,则函数中k的取值范围是( )
A.
B.
C.
D.
9、已知抛物线上有三点
,
,
,则
,
,
的大小关系为( )
A.
B.
C.
D.
10、下列各式中,正确的是 ( )
A.; B.
;
C.; D.
.
11、如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形、
、
、
的边长分别是12,16,9,12,则最大正方形
的面积是______________.
12、若关于x的一元二次方程x2+2x+3k=0有两个不相等的实数根,则k的取值范围是_____.
13、有六张正面分别标有数字﹣2,﹣1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该数字加1记为b.则数字a,b使得关于x的方程ax2+bx+=0有解的概率为_____.
14、反比例函数y=的图象在第_____象限.
15、二次函数的图象的开口方向是向__.
16、如图,四边形APBC内接于⊙O,∠APB=120°,PC平分∠APB,若PB=3,PA+PC=7,则PC=______.
17、计算:
(1)
(2)
18、(1)解方程:;
(2)计算:
19、如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.
(1)求抛物线的解析式;
(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;
(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
20、如图,已知在中,
,点D在边
上,
.
(1)求的长;
(2)连接,设
,试用
表示
.
21、先化简,再求值.,其中
为一元二次方程
的根
22、已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.
23、有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)用(m,n)表示小明取球时m与n的对应值,画出树状图(或列表),写出(m,n)的所有取值;
(2)求关于x的一元二次方程没有实数根的概率.
24、如图,在平面直角坐标系中,菱形的顶点
在
轴上,顶点
.
若顶点
在反比例函数
的图象上,求
的值;
连接
,过点
作
交
轴于点
,求直线
的函数解析式.
邮箱: 联系方式: