1、某班一合作学习小组有5人,某次数学测试成绩数据分别为65、78、86、91、85,则这组数据的中位数是( )
A.78
B.85
C.86
D.91
2、如图,在平面直角坐标系中,菱形的边
在
轴的正半轴上,反比例函数
的图象经过对角线
的中点
和顶点
.若菱形
的面积为12,则
的值为( ).
A.6
B.5
C.4
D.3
3、下列运算中正确的是( )
A.a3•a3=2a3
B.(3a3)2=9a6
C.b2m÷b2=bm
D.(﹣3a2)3=﹣9a6
4、依次观察如图三个图形,并判断照此规律从左到右第 2019 个图形是()
A. B.
C.
D.
5、如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是( )
A.
B.
C.
D.
6、化简的结果为( )
A.
B.0
C.
D.
7、已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有( )
A. 4个 B. 5个 C. 6个 D. 7个
8、把张对面互相的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( )
(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°
A. 1个 B. 2个 C. 3个 D. 4
9、据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为( )
A. 0.3×1010 B. 3×109 C. 30×108 D. 300×107
10、把分式中的x、y都扩大到原来的4倍,则分式的值( )
A.扩大到原来的8倍 B.扩大到原来的4倍
C.缩小到原来的 D.不变
11、一组数据1,3,2,7,x,5,6的中位数是4则该组数据的平均数为________ .
12、如下表所示,有按规律排列的A、B两组数:
列数 | 1 | 2 | 3 | 4 | 5 | 6 | … |
A组 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | … |
B组 | 3 | 6 | 9 | 12 | 15 | 18 | … |
已知A组的某个数与B组同一列的数相等,则这个数是 .
13、一天清晨,甲、乙两人在一条笔直的道路上同起点、同终点往返跑步.甲跑了分钟后乙再出发,当乙追上甲时,甲加快速度往前跑,先到达终点后立刻以加快后的速度返回起点.已知甲加速前、后分别保持匀速跑,乙全程均保持匀速跑下图是甲乙两人之间的距离
(米)与甲跑步的时间
(分)的部分函数图象.则当乙第一次到达终点时,甲距起点______米.
14、某同学使用计算器求20个数据的平均数时,错将其中一个数据201输入为21,那么由此求出的这组数据的平均数比实际平均数少________.
15、已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
16、小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )
A. ① B. ② C. ③ D. ①和②
【答案】C
【解析】试题分析:根据全等三角形的判定方法带③去可以利用“角边角”得到全等的三角形.
故选C.
考点:全等三角形的应用.
【题型】单选题
【结束】
12
如图,要测量池塘的宽度AB,在池塘外选取一点P,连接AP、BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为25m,则池塘宽AB为________ m,依据是________
17、甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,部分数据如下表所示.
x(小时) | 2 | 4 | 6 |
y(件) | 50 | 150 | 250 |
(1)求y与x之间的函数关系式;
(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?
18、如图,、
分别是
的直径和弦,弦
与
、
分别相交于点
、
,过点
的切线
与
的延长线相交于点
,且
.
(1)求证:;
(2)若,
,求
的半径长.
19、如图,在直角坐标系中,以点(3,0)为圆心,以6为半径的圆分别交
轴的正半轴于点
,交
轴的负半轴交于点
,交
轴的正半轴于点
,过点
的直线交
轴的负半轴于点
(-9,0)
(1)求两点的坐标;
(2)若抛物线经过
、
两点,求此抛物线的解析式;
(3)求证:直线是⊙
的切线;
20、观察下列各式:,
,
......
(1)请根据以上的式子填写下列各题:
(2)请根据你所找到的规律计算
21、年疫情期间,长沙市教育局出台《长沙市中小学线上教学工作实施意见》,长沙市推出名师公益大课堂,为学生提供线上直播教学,据统计,第一批公益课受益学生
万人次,第三批公益课受益学生
万人次.
(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
22、是
的直径,点C在
上,
于E交
于点F,连接
,点D在
延长线上,
.
(1)如图1,求证:是
的切线;
(2)如图2,过B作于M,
,
,求
的长.
23、先化简,再求值:
(1),其中
.
(2),在
,0,3这三个数中选择合适的数代入求值.
24、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
邮箱: 联系方式: