1、七名学生的鞋号分别是:23,22,21,23,22,22,23,则这组数据的众数是( )
A.22 B.23 C.22和23 D.没有众数
2、下列方程是一元一次方程的有( )
①;②
;③
;④
;⑤
;⑥
.
A.1个
B.2个
C.3个
D.4个
3、如图,小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形.其个数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )
A.2022
B.2020
C.2018
D.2016
4、已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是( )
A.当a=1时,函数图像过点(-1,1)
B.当a= -2时,函数图像与x轴没有交点
C.当a,则当x
1时,y随x的增大而减小
D.当a,则当x
1时,y随x的增大而增大
5、表示x、y两数的点在x轴上的位置如图所示,则|x-1|-|x+y|等于( )
A.y-1
B.y+1
C.1-y-2x
D.2x-y-1
6、下列调查,适合普查的是( )
A.夏季冷饮市场上冰淇淋的质量
B.某书中的印刷错误
C.某电视节目的收视率
D.洗衣机的使用寿命
7、如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,若在AC上取一点B,使∠ABD=145°,BD=500米,∠D=55°.要使A、C、E成一条直线,开挖点E与点D的距离是( )米.
A.500sin55°
B.500cos55°
C.500tan55°
D.500cos35°
8、下列运算正确的是( )
A.
B.
C.
D.
9、下列各式中,属于分式的为( )
A.
B.
C.
D.
10、中
过点A作
垂线
,将三角形面积分为
两部分,求
的值( )
A.十三分之六
B.九分之五
C.五分之二
D.十二分之七
11、已知CD是RtΔABC斜边AB上的高,且AC=6cm,BC=8cm,则CD=_____
12、已知二元一次方程的一个解是
,其中,
,则
__________.
13、若(m+1)0=1,则实数m应满足的条件_____.
14、若在实数范围内有意义,则实数x的取值范围是__.
15、如图,己知在梯形ABCD中,AD//BC,AD=AB=DC=3,BC=6,将△ABD绕着点D逆时针旋转,使点A落在点C处,点B落在点B'处,那么BB'=_______.
16、如图,抛物线经过点
,
.若点
到
轴的距离小于2,则
的取值范围是______.
17、如图,点A,B,C,D,E在同一条直线上,,D为
的中点.
(1)图中共有线段_______条,射线______条;
(2)若,求线段
的长度;
(3)若,则线段
的长用含a的代数式可以表示为________.
18、计算:(1);
(2).
19、如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.
(1)求观测站A、B之间的距离(结果保留根号);
(2)渔船从点P处沿射线的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西
的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:
)
20、作图题:
(1)下列正方形网格图中,部分方格涂上了阴影,请按照不同要求作图.
如图①,整个图形是轴对称图形,画出它的对称轴.
如图②,将某一个方格涂上阴影,使整个图形有两条对称轴.
如图③,将某一个方格涂上阴影,使整个图形有四条对称轴.
(2)在平面直角坐标系中,已知的顶点坐标
,
,
①画出;
②画出关于直线n对称的图形
,写出
三个顶点坐标.
21、如图,是
绕O点旋转40°后所得的图形,点C恰好在
上,
,求
的度数.
22、如图,在中,
,以
为直径的
与边
相交于点
,与边
相交于点
,
,垂足为点
,连接
.
(1)求证:与
相切;
(2)若,
的半径
,求
的长.
23、如图所示,
(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:
(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:新图案与图①~④的图案不能重合)
24、如图,等边沿AC翻折到
,E为
中点,请你仅用无刻度的直尺按下列要求作图.
(1)在图1中以为边画出一个等边三角形;
(2)在图2中画一个以点E为一个顶点的菱形.
邮箱: 联系方式: