1、下列命题中,正确的命题的是( )
A.有两边相等的平行四边形是菱形
B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形
D.两条对角线相等的四边形是矩形
2、已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )
A.50元、150元
B.50元、100元
C.100元、50元
D.150元、50元
3、正六边形的外角和是( )
A.
B.
C.
D.
4、如图,在△ABC中,AB=2,BC=3,∠B=60°,将△ABC沿BC方向平移,得到△DEF,再将线段DE绕点D逆时针旋转一定角度后,若点E恰好与点C重合,则平移的距离是( )
A.0.5
B.1
C.1.5
D.2
5、如图,矩形ABCD的边长AD=8,AB=6,E为AB的中点,AC分别与DE,DB相交于点M,N,则MN的长为( )
A.1 B.2 C. D.
6、一组数据、
、
、
、
、
的众数是( )
A. B.
C.
D.
7、体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的( )
A. 平均数 B. 方差 C. 频数分布 D. 中位数
8、关于函数y=﹣x+1的图象与性质,下列说法错误的是( )
A.图象不经过第三象限
B.图象是与y=﹣x﹣1平行的一条直线
C.y随x的增大而减小
D.当﹣2≤x≤1时,函数值y有最小值3
9、到三角形三边的距离都相等的点是这个三角形的
A. 三条高的交点 B. 三条边的垂直平分线的交点
C. 三条中线的交点 D. 三条角平分线的交点
10、等腰三角形的底边和腰长分别是10和12,则底边上的高是( )
A. 13 B. 8 C. D.
11、当时,则二次根式
的值为_________。
12、在△ABC中,点D,E分别为BC,AC的中点,若DE=2,则AB的长为_____.
13、如图,已知点A是一次函数y=2x的图象与反比例函数y=的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△OAB的面积为4,则点C的坐标为( )
A.(﹣8,0) B.(﹣6,0) C.(﹣,0) D.(﹣
,0)
14、已知点在直线
上,则
=__________.
15、如图,△ABC中,,
,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长是________.
16、如图,每个小正方形的边长都为1,则的三边长
,
,
的大小关系是________(用“>”连接).
17、如图,已知在平面直角坐标系中,矩形的边,
在
轴上,
,以点
为圆心,以
的长为半径画弧交
轴于点
,则点
的坐标是__________.
18、如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是_____.(结果保留根号)
19、如图,已知:∠MON=30°,点A 、A
、A
…在射线ON上,点B
、B
、B
…在射线OM上,△A
B
A
、△A
B
A
、△A
B
A
…均为等边三角形,若OA
=1,则△A
B
A
的边长为____
20、如图,在□ABCD中,两条对角线相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,以图中的任意四点(即点A、B、C、D、E、F、G、H、O中的任意四点)为顶点的平行四边形共有________个.
21、如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
(1)求OB的长度;
(2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
(3)若OCQ是等腰三角形,求CQ的长度.
22、不等式组 的解集是____________。
23、△ABC 在平面直角坐标系中的位置如图所示, 其中每个小正方形的边长为1个单位长度.
(1)△ABC 关于原点 O 的中心对称图形为△A1B1C1,写出点 A 的对应点 A1 的坐标 ;
(2)画出将△ABC 绕点O 顺时针旋转 90°得到的△A2B2C2;
(3)若 P(a,b)为△ABC 边上一点,则在△A2B2C2 中,点 P 对应的点 Q 的坐标为 .
(4)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标 .
24、计算或解方程:
(1)
(2)
(3) 解方程:
(4) 解方程:
25、解方程:
邮箱: 联系方式: