1、下列命题中,假命题的是( )
A. 四个角都相等的四边形是矩形
B. 两组对边分别相等的四边形是平行四边形
C. 对角线互相垂直且相等的四边形是正方形
D. 两条对角线互相垂直平分的四边形是菱形
2、在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是平行四边形ABCD的对角线,点E在AC上,,
,则
的度数为( ).
A.24°
B.25°
C.26°
D.28°
3、如图,△ABC中,点D、E分别在BC、AC边上,E是AC的中点,BC=3BD,BE与AD相交于F,S△ABD=2,S△BFD=0.5,则四边形FDCE的面积为( )
A. 1.5 B. 2.5 C. 3 D. 6
4、如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是( )
A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE
5、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是( )
A.中位数是8环
B.平均数是8环
C.众数是8环
D.极差是4环
6、若一个三角形三个内角度数的比为1:2:3,那么这个三角形是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
7、点(-4,1)关于原点的对称点是( )
A.(-4,1)
B.(-4,-1)
C.(4,1)
D.(4,-1)
8、下列几个数中,属于无理数的数是( )
A. B.
C.0.101001 D.
9、下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | 380 | 360 | 380 | 350 |
方差 | 12.5 | 13.5 | 2.4 | 2.7 |
A.甲
B.乙
C.丙
D.丁
10、10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为( )
A.
B.
C.
D.
11、若x2+2x的值是8,则4x2﹣5+8x的值是_____.
12、一元二次方程的解是:_____________.
13、已知多项式a2+4与一个单项式的和是一个多项式的平方,则满足条件的单项式是___(写出一个即可).
15、的立方根是______.
16、用尺规作图法作已知角的平分线的步骤如下:
①以点为圆心,任意长为半径作弧,交
于点
,交
于点
;
②分别以点,
为圆心,以大于
的长为半径作圆,两弧在
的内部相交于点
;
③作射线.则射线
为
的平分线.
由上述作法可得的依据是______.
17、计算:_____.
18、如图,在△ABC中,AB=8,BC=9,AC=5,直线m是△ABC中BC边的垂直平分线,P是直线上的一动点,则△APC的周长的最小值为________.
19、将23 700精确到千位并用科学记数法表示为_______________
20、一个正数的平方根是3a-2与4-a,则这个正数是_________.
21、如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、点A,直线
与x轴、y轴交于D点、C点,且点C和点B分别是线段
和线段
的中点,两直线交于P点.
(1)直接写出点A、点D的坐标,A(____,____)、D(____,____)
(2)求直线的关系式.
(3)求的面积.
22、矩形的边
、
在坐标轴上,点
,
其中a、b、c满足
.
(1)求出a、b、c的值;
(2)如图,E是上一点,将
沿
折叠得
,
交x轴于点D,若
,求
的长;
(3)如图,点Q是直线上一动点,以
为边作等腰直角
,其中
,O、Q、P按顺时针排列,当Q在直线
上运动时,
的最小值为____________.
23、先化简,再求值.
,其中
24、如图,在平面直角坐标系中,已知四边形的顶点
,
.
(1)画出四边形关于
轴的对称图形
;
(2)请直接写出点关于
轴的对称点
的坐标: .
25、计算:
(1)
(2)
(3)
(4)
邮箱: 联系方式: