1、已知,则下列等式中正确的是( )
A.
B.
C.
D.,
2、如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具,移动竹竿使竹竿和旗杆两者顶端的影子恰好落在地面的同一点A,此时,竹竿与点A相距8m,与旗杆相距22m,则旗杆的高为( )
A.6m
B.8.8m
C.12m
D.30m
3、已知 ⊙O 的半径6,点 到直线L的距离为5,则直线L与 ⊙O 的 位置关系( )
A. 相切 B. 相离 C. 相交 D. 无法判断
4、如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为
A.30° B.20° C.10° D.40°
5、一元二次方程+2x﹣1=0的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
6、下列命题是真命题的是( )
A.对角线相等的四边形是矩形
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直的矩形是正方形
7、已知二次函数y=ax2+bx+c的图象如图所示,则点M(,a)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
8、如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是( ).
A.72° B.54° C.36° D.18°
9、如图,内接于
,
,弦
是圆内接正多边形的一边,则该正多边形是( )
A.正五边形
B.正六边形
C.正十五边形
D.正十二边形
10、有两名男生和两名女生,王老师要随机地,两两一对地为他们排座位,一男一女排在一起的概率为( )
A. B.
C.
D.
11、如图⊙O中,∠BAC=74°,则∠BOC=_____.
12、如图,在矩形中对角线
,
交于点
,请添加一个条件______________,使矩形
是正方形(填一个即可)
13、如图,正方形的边长为4,E,F分别是边
上的动点,且
,连接
交于点G,P是
边上的另一个动点,连接
,则
的最小值为_______.
14、如图,的顶点坐标分别为
、
、
,如果将
绕点
按逆时针方向旋转
,得到
,那么点
的对应点
的坐标是________.
15、已知关于x的一元二次方程有一解为0,则k的值等于_______.
16、已知:关于x的一元二次方程x2﹣(R+r)x+=0有两个相等的实数根,其中R、r分别是⊙O1⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是 .
17、(1)解方程:(2x﹣5)2=9.
(2)解方程:(x﹣3)2=2(x﹣3).
18、在中,
,
,点C在直线m上,
,
,其中点D、E分别在直线AC、m上,将
绕点B旋转
点D、E都不与点C重合
.
当点D在边AC上时
如图
,设
,
,求y关于x的函数解析式,并写出定义域;
当
为等腰三角形时,求CD的长.
19、如图,已知正方形和正方形
,点
在边
上,点
在边
的延长线上,连接
,并延长
交
于点
.
(1)求证:∽
;
(2)如果与
交于点
,求证:
.
20、计算:
21、如图,在平面直角坐标系中△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).
(1)画出△ABC关于原点O中心对称的△A1B1C1;
(2)分别写出点A1,B1,C1的坐标.
22、在平面直角坐标系中,反比例函数
的图象经过点
、
.
(1)若二次函数的图象经过点B,求代数式
的值;
(2)若反比例函数的图象与二次函数
的图象只有一个交点,且该交点在直线
的下方,结合函数图象求a的取值范围.
23、如图,在平行四边形中,
,延长
至点E.使
,连接
.
(1)求证:四边形是矩形.
(2)连接,若
,
,求
的长.
24、如图,已知点在
的直径
延长线上,点
为
上,过
作
,与
的延长线相交于
,
为
的切线,
,
.
(1)求证:;
(2)求的长;
(3)若的平分线与
交于点
,
为
的内心,求
的长.
邮箱: 联系方式: