1、已知一组数据:2,6,4,6,7,则这组数据的中位数和众数分别是( )
A.4,4
B.4,6
C.6,6
D.6,7
2、如图,AB⊥BD,DE⊥BD,垂足分别为B,D,如果∠A=25°,BC=CD,那么下列结论中,错误的是( )
A.∠ACB=25°
B.∠ABC=90°
C.AC=CE
D.∠DCE=65°
3、已知与
互为相反数,则
的值是( )
A.
B.0
C.
D.2
4、已知一次函数,当
时,y的取值范围是( )
A.
B.
C.
D.
5、如图,在中,
,
,
平分
,E是
中点,若
,则
的长为( )
A.3
B.
C.4
D.
6、下列图标不是轴对称图形的是( )
A. B.
C.
D.
7、点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、下列条件中,能判断四边形是菱形的是( )
A.对角线相等的平行四边形
B.对角线互相垂直且相等的四边形
C.对角线互相平分且垂直的四边形
D.对角线互相垂直的四边形
9、菱形和矩形都具有的性质是( )
A.对角线互相垂直
B.对角线长度相等
C.对角线平分一组对角
D.对角线互相平分
10、根据下列条件,能作出唯一三角形的是( )
A.
B.
C.
D.
11、如图,在中,
,
,垂足分别是
,
,
,
交于点
,已知
,
,则
______.
12、如图,水塔的东北方向
处有一抽水站
,在水塔的东南方向
处有一建筑物工地
,在
间建一条直水管,则水管的长为________
.
13、若△ABC中,AB、AC分别为10cm和16cm,D是BC中点,则AD的范围________
14、已知一次函数图象过(1,2)且y随x的增大则减小,请写出一个符合条件的函数解析式______.
15、直角坐标平面内,已知点,点
,那么
___________.
16、若有意义,则x的取值范围是_________.
17、平面直角坐标系中,点与点
关于y轴对称,则
______.
18、如图,已知△ABC≌△DEF,且BE=10cm,CF=4cm,则BC=__________
19、已知点P在x轴上,且到y轴的距离为3,则点P坐标为__________.
20、将点P(﹣3,﹣2)向右平移2个单位,再向下平移3个单位,则所得到点的坐标为____.
21、已知:如图∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点。证明:OE⊥AB.
22、某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用
表示,共分成四组:
).下面给出了部分信息:
七年级名学生的竞赛成绩是:
;抽取的八年级
名学生的竞赛成绩没有低于
分的,且在
组中的数据是:
根据以上信息,解答下列问题:
(1)直接写出图表中的值;
(2)计算的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;
(3)该学校七、八年级共人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(
)的学生人数是多少?
七、八年级抽取的学生竞赛成绩统计表
年级 | 七 | 八 |
平均数 | ||
中位数 | ||
众数 | ||
方差 |
23、甲乙两人同时同地沿同一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分钟到达顶峰.甲乙两人的攀登速度各是多少?如果山高为米,甲的攀登速度是乙的
倍,并比乙早
分钟到达顶峰,则两人的攀登速度各是多少?
24、今年10月1日上午,庆祝中华人民共和国成立70周年阅兵式在天安门正式举行.通常提到的“阅兵”,实际是分为“阅兵式”和“分列式”.阅兵式,就是士兵不动,军委主席坐车来检阅.分列式,就是所有方(梯)队,踏着统一的节奏,依次通过天安门前检阅区.在分列式中,受检阅的距离就是天安门前,东西的两个华表之间,两个华表相隔米.受检阅官兵迈着每步
厘米,必需x步走完,若步速每分钟
步,需要时间
秒.求出
与
各是多少?若淮北籍东海舰队航空兵副司令员梁旭少将在受检阅时,他走过的路程
步,行走的时间为
秒写出
与
的函数关系(不需要写出自变量的取值范围)
25、求下列各式中的x的值:
(1)9x2=16
(2)(x-1)3=64.
邮箱: 联系方式: