1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、工业燃烧煤、石油等化石燃料释放出大量氮氧化物(NOx)、CO2、SO2等气体,严重污染空气。对废气进行脱硝、脱碳和脱硫处理可实现绿色环保、废物利用。
Ⅰ.脱硝:
已知:H2的燃烧热为285.8kJ·mol-1
N2(g)+2O2(g)=2NO2(g) ΔH=+133kJ·mol-1
H2O(g)=H2O(l) ΔH=-44kJ·mol-1
催化剂存在下,H2还原NO2生成水蒸气和其他无毒物质的热化学方程式为:____________。
Ⅱ.脱碳:
(1)向2L密闭容器中加入2molCO2和6molH2,在适当的催化剂作用下,发生反应:
CO2(g)+3H2(g)CH3OH(l)+H2O(l)
①该反应自发进行的条件是_____________(填“低温”、“高温”或“任意温度”)
②下列叙述能说明此反应达到平衡状态的是____________。(填字母)
a.混合气体的平均式量保持不变 b.CO2和H2的体积分数保持不变
c.CO2和H2的转化率相等 d.混合气体的密度保持不变
e.1molCO2生成的同时有3mol H—H键断裂
③CO2的浓度随时间(0~t2)变化如下图所示,在t2时将容器容积缩小一倍,t3时达到平衡,t4时降低温度,t5时达到平衡,请画出t2~t6 CO2浓度随时间的变化。_____________
⑵改变温度,使反应CO2(g)+3H2(g)CH3OH(g)+H2O(g) ΔH﹤0中的所有物质都为气态。起始温度、体积相同(T1℃、2L密闭容器)。反应过程中部分数据见下表:
| 反应时间 | CO2(mol) | H2(mol) | CH3OH(mol) | H2O(mol) |
反应Ⅰ:恒温恒容 | 0min | 2 | 6 | 0 | 0 |
10min |
| 4.5 |
|
| |
20min | 1 |
|
|
| |
30min |
|
| 1 |
| |
反应Ⅱ:绝热恒容 | 0min | 0 | 0 | 2 | 2 |
①达到平衡时,反应Ⅰ、Ⅱ对比:平衡常数K(I)______ K(II)(填“﹥”“﹤”或“=”下同);平衡时CH3OH的浓度c(I)____ c(II)。
②对反应Ⅰ,前10min内的平均反应速率v(CH3OH)=_______ 。在其他条件不变的情况下,若30min时只改变温度T2℃,此时H2的物质的量为3.2mol,则T1___T2(填“>”、“<”或“=”)。若30min时只向容器中再充入1molCO2(g)和1molH2O(g),则平衡_____移动(填“正向”“逆向”或“不”)。
⑶利用人工光合作用可将CO2转化为甲酸,反应原理为2CO2+2H2O=2HCOOH+O2,
装置如图所示:
①电极2的电极反应式是____________;
②在标准状况下,当电极2室有11.2L CO2反应。 理论上电极1室液体质量_____(填“增加”或“减少”______g。
3、氢能是理想的清洁能源,资源丰富。以太阳能为热源分解 Fe3O4 ,经由热化学铁氧化合物循环分解水制H2 的过程如下:
(1)过程Ⅰ:
①将O2分离出去,目的是提高Fe3O4的 。
②平衡常数K 随温度变化的关系是 。
③在压强 p1下, Fe3O4的平衡转化率随温度变化的(Fe3O4) ~ T 曲线如图 1 所示。若将压强由p1增大到p2 ,在图1 中画出 p2 的
(Fe3O4) ~ T 曲线示意图。
(2)过程Ⅱ的化学方程式是 。
(3)其他条件不变时,过程Ⅱ在不同温度下, H2O的转化率随时间的变化(H2 O) ~ t曲线如图2 所示。比较温度T1 、T2 、T3的大小关系是 ,判断依据是 。
(4)科研人员研制出透氧膜(OTM) ,它允许电子、O2-同时透过,可实现水连续分解制H2。工作时,CO、H 2O分别在透氧膜的两侧反应。工作原理示意图如下:
H2O在 侧反应(填“ a ”或“ b ”),在该侧H2O释放出H2的反应式是 。
4、门捷列夫在研究周期表时预言了包括“类铝”、“类硅”在内的11种元素。
(1)门捷列夫预言的“类硅”,多年后被德国化学家文克勒发现,命名为锗(Ge)。
①已知主族元素锗的最高化合价为+4价,其最高价氧化物的水化物为两性氢氧化物。试比较元素的非金属性Si___ Ge(用“>”或“<”表示)。
②若锗位于Si的下一周期,写出“锗”在周期表中的位置_____。根据锗在周期表中处于金属和非金属分界线附近,预测锗单质的一种用途是_______.
③硅和锗单质分别与反应时,反应较难进行的是_______(填“硅”或“锗”)。
(2)“类铝”在门捷列夫预言4年后,被布瓦博德朗在一种矿石中发现,命名为镓(Ga)。
①由镓的性质推知,镓与铝同主族,且位于铝的下一周期。试写出镓原子的结构示意图____。冶炼金属镓通常采用的方法是_____.
②已知Ga(OH)3难溶于水,为判断Ga(OH)3是否为两性氢氧化物,设计实验时,需要选用的试剂有GaCl3溶液、________和________.
(3)某同学阅读课外资料,看到了下列有关锗、锡、铅三种元素的性质描述:
①锗、锡在空气中不反应,铅在空气中表面形成一层氧化铅;
②锗与盐酸不反应,锡与盐酸反应,铅与盐酸反应但生成PbCl2微溶而使反应终止:
该同学查找三种元素在周期表的位置如图所示:
根据以上信息推测,下列描述正确的是______(填标号)。
a.锗、锡、铅的+4价的氢氧化物的碱性强弱顺序是:Ge(OH)4<Sn(OH)4<Pb(OH)4
b.锗、锡、铅的金属性依次减弱;
c. 锗、锡、铅的原子半径依次增大。
5、有下列八种物质:①氯化钡;②金刚石;③硫;④钨;⑤氯化钠;⑥钠;⑦二氧化硅;⑧干冰,回答有关这八种物质的问题。
(1)将这八种物质按不同晶体类型分成四组,并填写下表:
各组中物质的编号 | ______ | ______ | ______ | ______ |
晶体类型 | 分子晶体 | 原子晶体 | 离子晶体 | 金属晶体 |
(2)其中以共价键相结合,原子彼此间形成空间网状结构的化合物是______(填编号,下同)。晶体内存在单个分子的单质是______。
(3)其中硬度最大的物质是______;熔点最低的物质是______。
6、二氧化氯(ClO2)是国内外公认的高效、广谱、快速、安全无毒的杀菌消毒剂,被称为“第4代消毒剂”。工业上可采用氯酸钠(NaClO3)或亚氯酸钠(NaClO2)为原料制备ClO2。
(1)亚氯酸钠也是一种性能优良的漂白剂,但在强酸性溶液中会发生歧化反应,产生ClO2气体,离子方程式为___________________________;向亚氯酸钠溶液中加入盐酸,反应剧烈。若将盐酸改为相同pH的硫酸,开始时反应缓慢,稍后一段时间产生气体速率迅速加快。产生气体速率迅速加快的原因是 。
(2)化学法可采用盐酸或双氧水还原氯酸钠制备ClO2。用H2O2作还原剂制备的ClO2更适合用于饮用水的消毒,其主要原因是 。
(3)电解法是目前研究最为热门的生产ClO2的方法之一。如图所示为直接电解氯酸钠、自动催化循环制备高纯ClO2的实验。
①电源负极为___________________极(填A或B)
②写出阴极室发生反应的电极反应式和离子方程式
_______________________ ___ ; 。
③控制电解液H+不低于5mol/L,可有效防止因H+浓度降低而导致的ClO2—歧化反应。若两极共收集到气体22.4L(体积已折算为标准状况,忽略电解液体积的变化和ClO2气体溶解的部分),此时阳极室与阴极室c(H+)之差为_________________。
7、金常以微细粒浸染于黄铁矿、含砷黄铁矿中,此类矿石的预氧化处理方法主要有:焙烧氧化、生物氧化和湿法氧化。
(1)含砷黄铁矿(主要成分为FeAsS)高温焙烧氧化后,再用氰化钠(NaCN)溶液浸出。已知:氢氰酸(HCN)易挥发,有剧毒。
①焙烧氧化的产物有As4O6、Fe3O4,该反应的化学方程式为_______。
②焙烧氧化的缺点为_______。
③采用电解法除去反应剩余液中有毒物质,CN-在阳极区被去除。在pH=10时,CN-去除效果最佳且能耗最低,原因是____。
(2)利用细菌进行生物氧化提取金,pH对金的浸出率影响如图-1,pH影响金浸出率的原因是_____。
(3)湿法氧化是在溶液中化学物质的作用下提取金。已知Au的硫酸盐难溶于水,Au+与、
等形成配合物。
①工业上利用硫代硫酸盐可浸出金生成Au(S2O3),但在富氧条件下浸出率明显降低,原因是___。
②常温下,已知H2S-HS--S2-粒子体系随pH变化各组分分布如图-2,δ(H2S)= 。多硫化物浸金的一种原理是:混合体系在通空气条件下氧化时,体系中S2-先被氧化为S,再转化为
。研究发现
可将Au氧化为AuS-,pH=11时
将Au氧化的离子方程式为_______。
8、可逆反应2SO2(g)+O2(g)⇌2SO3(g)是硫酸工业中非常重要的一个反应,因该反应中使用催化剂而被命名为接触法制硫酸。
(1)某温度下,使用V2O5进行反应:2SO2(g)+O2(g)⇌2SO3(g),在保证O2(g)的浓度不变的条件下,增大容器的体积,平衡____(填字母代号)。
A.向正反应方向移动 B.不移动 C.向逆反应方向移动 D.无法确定
(2)使用V2O5催化该反应时,涉及到催化剂V2O5的热化学反应有:
①V2O5(s)+SO2(g)⇌V2O4(s)+SO3(g) ∆H1=+59.6kJ/mol
②2V2O4(s)+O2(g)⇌2V2O5(s) ∆H2=-314.4kJ/mol
向10L密闭容器中加入V2O4(s)、SO2(g)各1mol及一定量的O2,改变加入O2的量,在常温下反应一段时间后,测得容器中V2O4、V2O5、SO2和SO3的量随反应前加入O2的变化如图所示,图中没有生成SO3的可能原因是_________________。
(3)向一保持常压的密闭容器中加入V2O5(s)、SO2(g)各0.6mol,O2(g)0.3mol,此时容器的体积为10L,分别在T1、T2两种温度下进行反应,测得容器中SO2的转化率如图所示。
①T2时,2SO2(g)+O2(g)⇌2SO3(g)的平衡常数K=________。
②下列说法正确的是_________。
A.T1<T2
B.若向该容器通入高温He(g)(不参加反应,高于T2),SO3的产率将减小,仅因为温度升高,平衡向逆方向移动
C.合成硫酸的设备中,在接触室合成SO3需要高压设备
D.依据反应装置所能承受的最高温度定为此反应温度
③在比T2更高的温度T3下,反应②平衡向左移动,生成更多的V2O4固体会覆盖在V2O5固体的表面上,该因素对反应①影响超过了温度因素的影响。请在图中画出在T3下,α(SO2)在0~t1时刻的变化图(0~t1时刻之间已经平衡)________。
9、【化学—选修5:有机化学】有机物A→F有如下转化关系:
已知:①
②核磁共振氢谱显示C的分子中含有4种不同化学环境的氢原子,且峰面积之比为3:2:2:1。
③F是酯类化合物,分子中苯环上的一溴代物只有两种。
(1)A的分子式是 ,主要用途是 (写一种)。
(2)检验B中官能团的常用方法是 。
(3)D物质的名称为 。
(4)C+E→F的化学方程式是 。
(5)X与E互为同分异构体,且X有下列性质,符合条件的X有 种。
①接触NaHCO3有二氧化碳气体产生。
②与银氨溶液共热有银镜现象。
③1摩尔X与足量钠反应有1摩尔气体产生。
(6)Y与E也互为同分异构体,属于酯类化合物,分子中只含一种官能团,且苯环上的一硝基取代物只有一种,则Y的结构简式为 。
10、金属锂与干燥、纯净的N2左500℃左右反应生成氮化锂(Li3N),该物质是一种优良的贮氢材料。一种制名氮化锂的方法及装置如下(部分夹持装置略) :
查阅资料:
| 物理性质 | 物理性质 |
金属锂(Li) | 熔点180C,沸点1340C | 与氨气反应: 2Li+2NH3=2LiNH2+H2↑ |
氮化锂 (Li3N) | 红色晶状固体,能吸附H2 | ①易水解:Li3N+3H2O=3LiOH+NH3↑ ②高温时能腐蚀镍、铜、石英等 |
回答下列问题:
(1)装置A中发生反应的化学方程式为___________
(2)仪器B、F的名称为___________;两者所盛装的试剂___________(填“能”或“不能”)交换。
(3) D中所装试剂a为___________,作用是___________。
(4)经分析,若将装置D更换为下图所示的装置___________(填序号)会更合理。
(5)装置E中石棉绒(透气且性质稳定)包裹Li的作用是吸收装置中残留的O2,装在氧化锆小舟中的Li粒不能直接放在反应管中的原因是___________。
(6)实验前将24.0 g金属锂置于质量为30.2 g的氧化锆小舟中,待反应一段时间后, 使产品在氮气氛围中充分冷却后再对氧化锆小舟进行称重,总质量为68.2 g,则Li3N的产率约为___________%。
11、天然水常含有较多钙、镁离子而称之为硬水,硬水软化是指除去钙、镁离子。若某天然水中离子含量如下表:
离子 | Ca2+ | Mg2+ | HCO | 其他 |
含量(mol/L) | 1.2×10-3 | 6.0×10-4 | 8.0×10-4 | / |
现要用化学方法软化10m3这种天然水,则需要先加入Ca(OH)2_______g以除去Mg2+和HCO,后加入Na2CO3_______g以除去Ca2+(要求写出计算过程)。
12、SbCl3可用于红外光谱分析用溶剂、显像管生产等。以某矿渣(主要成分为Sb2O3,含有少量CuO、As2O3等杂质)为原料制备SbCl3的工艺流程如图所示:
已知:①Sb属于第VA族元素,主要化合价为+3、+5价。
②常温下,Ksp(CuS)=6.3×10-36,Ksp(Sb2S3)=1.5×10-93。
③As2O3微溶于水、Sb2O3难溶于水,它们均为两性氧化物;SbOCl难溶于水。
④次磷酸(H3PO2)为一元中强酸,具有强还原性。
回答下列问题:
(1)基态As的简化电子排布式为___________;As、P、Cl三种元素的电负性从大到小的顺序为___________。
(2)“滤渣1”的主要成分是SbOCl,为了提高锑的利用率,将滤渣1用氨水浸取使其转化为Sb2O3,写出该反应的离子方程式:___________。
(3)已知“沉淀”阶段溶液中c(Sb3+)起始=0.01mol·L-1.当“沉淀”后溶液中c(Cu2+)=6.3×10-6mol·L-1时,该阶段是否有Sb2S3沉淀生成?___________(通过计算说明,简要写出计算过程,不考虑溶液体积的变化)。
(4)“除砷”时,NaH2PO2的氧化产物为H3PO4。
①NaH2PO2的化学名称为___________。H3PO4中磷原子的杂化类型为___________。
②“除砷”过程中生成As的反应的化学方程式是___________。
(5)“电解”SbCl3溶液时,被氧化的Sb元素与被还原的Sb元素的质量之比为3∶2,则电解方程式为___________。
13、用软锰矿(主要成分MnO2,含有SiO2、Fe2O3、Al2O3、MgCO3等杂质)制备MnSO4·H2O的流程如图:
已知:
氢氧化物 | Fe(OH)3 | Al(OH)3 | Fe(OH)2 | Mn(OH)2 | Mg(OH)2 |
开始沉淀时的pH | 2.3 | 4.0 | 7.5 | 8.8 | 10.4 |
沉淀完全时的pH | 4.1 | 5.2 | 9.7 | 10.4 | 12.4 |
回答下列问题:
(1)焙烧时,MnO2和Fe2O3在纤维素作用下分别转化为MnO、Fe3O4,则纤维素的作用是___。
(2)酸浸时,浸出液的pH与锰的浸出率关系如图所示,实际生产中,酸浸时控制硫酸的量不宜过多,使pH在2左右。请结合图示和制备硫酸锰的流程,说明硫酸的量不宜过多的原因:___。
(3)净化时,加入30%H2O2的目的是___(用离子方程式表示);加氨水,调pH的范围是___,目的是___。
(4)结合MgSO4与MnSO4溶解度曲线,简述“结晶分离”的具体实验操作:___。
(5)产品MnSO4•H2O纯度测定:称取ag产品,在适宜的条件下用适量NH4NO3将Mn2+氧化为Mn3+,再用0.1000mol•L-1(NH4)2Fe(SO4)2溶液bmL刚好把Mn3+转化为Mn2+。通过计算可知,产品纯度为___(用质量分数表示)。
邮箱: 联系方式: