1、实数、
在数轴上对应点的位置如图所示,化简
的结果是( )
A.
B.
C.
D.
2、已知一个二次函数y=ax2(a≠0)的图象经过(-2,6),则下列点中不在该函数的图象上的是( )
A. (2,6) B. (1,1.5) C. (-1,1.5) D. (2,8)
3、若是关于
的一元一次方程,则
的值是( )
A.
B.
C.
D.
4、如图,抛物线与直线
相交于
,
两点,点C是抛物线的顶点.下列结论正确的个数( )
(1);(2)抛物线为:
;(3)当
时,代数式
的值是负数;(4)△ABC的面积为6
A.4个
B.3个
C.2个
D.1个
5、如图,点为菱形
边上的一个动点,并沿
→
→
→
的路径移动,设点E经过的路径长为
,
的面积为
,则下列图象能大致反映
与
的函数关系的是( )
A. B.
C. D.
6、在函数的图象上有三点A1(
,
),A2(
,
),A3(
,
),已知
,则下列各式中,正确的是( )
A. B.
C.
D.
7、小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
A.他离家8km共用了30min
B.他等公交车时间为6min
C.他步行的速度是100m/min
D.公交车的速度是350m/min
8、已知点、
、
分别是数轴上的三个点,点
表示的数是
,点
表示的数是
,且
、
两点的距离是
、
两点间距离的3倍,则点
表示的数是( )
A. B.
C.
或
D.
或
9、如图,是
的弦,直径
交
于点
,若
,
,则
的长为( )
A. B.4 C.6 D.
10、下列说法中,不正确的是( )
A.单项式的次数是4
B.的系数是
C.是四次三项式
D.与
是同类项
11、若多边形的每个内角都是,则该多边形的边数是_________.
12、如图,阶梯图的每个台阶上都标着一个数, 从下到上的第1个至第3个台阶上依次标着-5,-2,1,且任意相邻三个台阶上数的和相等,从下到上第30个台阶上的数是_________;
13、把16.42° 用度分秒表示为 ________________;把71°4′30″用度表示为____________度.
14、设 ,那么
的整数部分是_______.
15、如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是__________.
16、若在反比例函数
的图象,则
___________.
17、如图,中,
.
(1)尺规作图(保留作图痕迹,不写作法与证明):
①作的平分线
交边
于点
;
②过点作
于点
;
(2)在(1)所画图中,若,
,则
长为________________.
18、若,求
的值
19、如图,在四边形中,
平分
.
(1)求证:四边形是菱形.
(2)过点作
,交
的延长线于点
,若
①求菱形的面积.
②求四边形的周长.
20、观察下列各组勾股数有哪些规律:
3,4,5; | 9,40,41; |
5,12,13; | …… |
7,24,25; |
|
请解答:
(1)当时,求
,
的值;
(2)判断21,220,221是否为一组勾股数?若是,请说明理由.
21、解方程组:.
22、(1)计算:
(2)先化简,再求值,其中
.
23、计算:
(1)26-17+(-6)-33
(2)-14-×[3-(-3)2]
24、计算:
(1) ;
(2)()(3
).
邮箱: 联系方式: