1、如图,由个大小一样的小长方形组成的大长方形的周长为
, 则大长方形的面积是( )
A.
B.
C.
D.
2、如果是四次三项式,那么m+n的值是( )
A.4
B.5
C.6
D.7
3、如图,数轴上点表示的数可能是( )
A.
B.
C.
D.
4、如图,数轴上、
两点分别对应
、
,则下列结论正确的是( )
A.
B.
C.
D.
5、下列方程的变形,正确的是( ).
A.由,得
B.由,得
C.由,得
D.由,得
6、下列等式变形正确的是( )
A.如果,那么
B.如果,那么
C.如果,那么
D.如果,那么
7、一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.10°
B.15°
C.20°
D.25°
8、如图,从左到右的三个图形是由立体图形展开得到的,则相应的立体图形的顺次是( )
A.正方体、圆柱、圆锥
B.正方体、圆锥、三棱锥
C.正方体、圆柱、三棱柱
D.三棱锥、圆柱、正方体
9、如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分,那么
的度数是( )
A.180°
B.20°
C.36°
D.45°
10、与互为相反数的是( )
A.
B.
C.
D.3
11、如图,,
,则
的度数是( )
A.
B.
C.
D.
12、计算的结果是( )
A.
B.
C.
D.
13、如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为 _____.
14、代数式与
的差与字母x的取值无关,则代数式
=_______.
15、“的3倍与
的和”用代数式表示为__________.
16、如图在长方形ABCD的边上有P、Q两个动点速度分别为,
,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t秒.动点P从A点出发沿折线
向终点C运动,动点Q从C点出发,沿折线
向终点A运动.若
,
,当
和
的面积之和为8平方厘米时,
的值为_________.
17、若,则
______.
18、要使分式有意义,则
的取值范围是________.
19、不等式的非负整数解为___________.
20、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头
两,根据题意可列方程组为______.
21、计算或化简
(1)﹣12018+2﹣3+(3.14﹣π)0
(2)2a2•a3÷a4
(3)(x+2)(x﹣2)﹣(2x﹣1)2
22、计算:
(1)6.8﹣(﹣4.2)+(﹣9);
(2)﹣2﹣(﹣3)×(﹣15);
(3)()×(﹣24);
(4)
23、暑假将至,某校组织学生进行“交通安全”知识竞赛,老师随机抽取了部分学生的成绩(得分取整数,满分100分),整理后绘制成如图所示的不完整的扇形统计图和频数分布直方图.
请根据以上信息,解答下列问题:
(1)本次共抽取 名学生成绩,A的频数值为 ,在扇形统计图中,n= ,E组所占比例为 ;
(2)请补全频数分布直方图;
(3)若全校共有1200名学生,根据抽样调查的结果,估计成绩在80分以上的学生人数有多少人?
24、一只小乌龟从点A出发,在一条水平直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.
(1)小乌龟最后是否回到出发点A?
(2)小乌龟离开点A的距离最远是 cm;
(3)小乌龟在爬行过程中,若每爬行2 cm奖励1粒芝麻,则小乌龟一共得到多少粒芝麻?
25、计算:
(1)5-()÷(-
) (2)-24-[-3×2+(-3)2÷(-
)]
(3)3a2-2a+4a2-7a (4)5mn-2[3mn-(4mn2+mn)]-5mn2
26、观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
| 图①
| 图②
| 图③
|
三个角上三个数的积
| 1×(﹣1)×2=﹣2
| (﹣3)×(﹣4)×(﹣5)=﹣60
|
|
三个角上三个数的和
| 1+(﹣1)+2=2
| (﹣3)+(﹣4)+(﹣5)=﹣12
|
|
积与和的商
| ﹣2÷2=﹣1,
|
|
|
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.
邮箱: 联系方式: