1、函数,
的最小正周期是( )
A.
B.
C.
D.
2、对任意实数,有
,若
,则( )
A. 2 B. C.
D.
3、若角满足
,则
的值可能为( )
A.
B.
C.
D.
4、《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈,头节高五寸①,头圈一尺三②,逐节多三分③,逐圈少分三④,一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺),问:此民谣提出的问题的答案是
A.61.395尺
B.61.905尺
C.72.705尺
D.73.995尺
5、中,
,则
=( )
A.或
B.
C.
D.
6、甲、乙、丙三名志愿者到某医院参加抗击新冠疫情活动,该医院有、
两种类型的机器各一台,其中甲只会操作
种类型的机器,乙、丙两名志愿者两种类型的机器都会操作.现从甲、乙、丙三名志愿者中选派2人去操作该医院
、
两种类型的机器(每人操作一台机器),则不同的选派方法一共有( )
A.2种
B.4种
C.6种
D.8种
7、下列说法不正确的是( )
A.若“且
”为假,则
,
至少有一个是假命题.
B.命题“”的否定是“
”.
C.设是两个集合,则“
”是“
”的充分不必要条件.
D.当时,幂函数
在
上单调递减.
8、设,则
的大小关系是( )
A.
B.
C.
D.
9、圆(x+1)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为( )
A. 内切 B. 外切 C. 相交 D. 相离
10、已知数列的前
项和
,则
( )
A.
B.0
C.
D.
11、关于直线m、n及平面α、β,下列命题中正确的是( )
A.若m∥α,α∩β=n,则m∥n
B.若m⊥α,m∥β,则α⊥β
C.若m∥α,n∥α,则m∥n
D.若m⊂α,α⊥β,则m⊥β
12、已知复数满足,则
共轭复数
( )
A. B.
C.
D.
13、已知与曲线
相切,则
的值为
A.
B.
C.
D.
14、若等比数列{an}的前n项和为Sn,且S5=10,S10=30,则S20=( )
A.80
B.120
C.150
D.180
15、设是两个不同的平面,则“
”是“
”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件
16、如图,是以ABCD为底面的长方体的一个斜截面,其中
,
,
,
,
,则该几何体的体积为
A.96
B.102
C.104
D.144
17、直线在
轴上的截距是( )
A.
B.
C.
D.
18、如果点位于第二象限,那么角
的终边在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
19、已知函数,
,则“
”是“
的值域为
”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
20、点M(3,-2,1)关于yOz平面对称的点的坐标是( )
A.(-3,2,1) B.(-3,2,-1) C.(3,2,-1) D.(-3,-2,1)
21、已知公比不为的等比数列
满足
,则
__________.
22、设函数,那么
=_____
23、已知两圆相交于两点,
,若两圆圆心都在直线
上,则
的值是________________ .
24、将6个半径都为1的钢球完全装入形状为圆柱的容器里,分两层放入,每层3个,下层的3个小球两两相切且均与圆柱内壁相切,则该圆柱体的高的最小值为______.
25、设是定义在R上的奇函数,且
时,
则
.
26、满足等式的
的集合是________________.
27、已知二次函数满足条件
和
.
(1)求的解析式;
(2)求在区间
上的取值范围.
28、某工厂产生的废气经过过滤后排放,过滤过程中废气的剩余污染物数量与过滤开始后的时间
(小时)的关系为
.其中
为过滤开始时废气的污染物数量,
为常数.如果过滤开始后经过5个小时消除了
的污染物,试求:
(1)过滤开始后经过10个小时还剩百分之几的污染物?
(2)求污染物减少所需要的时间.(计算结果参考数据:
,
,
)
29、已知两直线和
.试确定
的值,使
(1)与
相交于点
;
(2)∥
;
(3),且
在
轴上的截距为-1.
30、设等差数列的前n项和为
,若
,则当
最小值时,求n的值.
31、已知各棱长均为2的直三棱柱中,E为AB的中点.
(1)求证:平面
;
(2)求点到平面
的距离.
32、已知椭圆的焦距为
,左、右顶点分别为
、
,
是椭圆上一点, 记直线
、
的斜率为
、
,且有
.
(1)求椭圆的方程;
(2)若直线与椭圆
交于
、
两点, 以
、
为直径的圆经过原点, 且线段
的垂直平分线在
轴上的截距为
,求直线
的方程.
邮箱: 联系方式: