1、如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°.已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)( )
A. 30米 B. 18.9米 C. 32.6米 D. 30.6米
2、已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
3、张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为( )
A. y=3500x B. x=3500y C. y= D. y=
4、我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若个人乘一辆车,则空
辆车;若
个人乘一辆车,则有
个人要步行,问人与车数各是多少?若设有
个人,则可列方程是( )
A. B.
C. D.
5、已知一组数据 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,那么频率为
的范围是 ( )
A. B.
C.
D.
6、下列各数是有理数的是
A.
B.
C.
D.
7、如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D',C'的位置.若∠EFC'=115°,则∠AED'等于( )
A.70°
B.65°
C.50°
D.25°
8、若,则
( )
A. -1 B. 2 C. 0 D. 1
9、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C.
D.
10、如图所示,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为( )
A. B. 8 C.
D.
11、如果函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而__________.
12、在△ABC中,∠B=45°,cosA=,则∠C的度数是_____.
13、如图,在平面直角坐标系中,点
,
,
,…和
,
,
,…分别在直线
和
轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果
(1,1),
(
),那么点
的纵坐标是_______.
14、如图,在平面直角坐标系中,的边
在
轴上,边
与
轴交于点
,且
,反比例函数
的图象经过点
,若
,则
的值为______.
15、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为____.最大值为____________.
16、如图,△ABC是边长为2的等边三角形,AD是BC边上的高,CE是AB边上的高.将△ADC绕点D顺时针旋转得到,其中点A的对应点为点
,点C的对应点为点
.在旋转过程中,当点
落在直线EC上时,
的长为______.
17、解方程:
18、如图1,一次函数y=kx+b的图象与反比例函数y= 的图象交于C(2,n)、D两点,与x轴,y轴分别交于A、B(0,2)两点,如果△AOC的面积为6.
(1)求点A的坐标
(2)求一次函数和反比例函数的解析式;
(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和△COE的面积。
19、计算:
(1)sin30°+2cos60°×tan60°﹣sin45°
(2)()﹣1﹣(2﹣
)0﹣2sin60°+|
﹣2
|
20、某网上书城“五一·劳动节”期间在特定的书目中举办特价促销活动,有A、B、C、D四本书是小明比较中意的,但是他只打算选购两本,求下列事件的概率:
(1)小明购买A书,再从其余三本书中随机选一款,恰好选中C的概率是_________;
(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A、C两本的概率.
21、(12分)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.
(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使?若存在,求出P点坐标;若不存在,请说明理由.
22、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6
分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:
(1)请补充完成下面的成绩统计分析表:
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由.
23、(9分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO.
(1)求证:△CDP≌△POB;
(2)填空:
① 若AB=4,则四边形AOPD的最大面积为 ;
② 连接OD,当∠PBA的度数为 时,四边形BPDO是菱形.
24、如图1,已知□中,
,
于
,交
延长线
,
平分
,连接
,
.
(1)如果,
,求线段
的长.
(2)如果,求证:
.
(3)如图2,在(2)的条件下,若,点
、
是线段
、
上的动点,
是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.
邮箱: 联系方式: