1、为了了解某校学生早晨就餐的情况,四位同学分别作了不同的调查:小华向初一年级的三个班级的全体同学作了调查;小明向初二年级的三个班级的全体同学作了调查;小芳向初三年级的全体同学作了调查;小珍分别向初一(1)班、初二(1)班、初三(1)班的全体同学作了调查.其中抽样调查较科学的是( )
A. 小华 B. 小明 C. 小芳 D. 小珍
2、在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )
A. 75 B. 90 C. 105 D. 120
3、已知关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m=1
B.m≥1
C.m<1
D.m<1且m≠0
4、如图,在中,
,以顶点
为圆心,适当长为半径画弧,分别交
于点
,再分别以点
为圆心,大于
的长为半径面弧,两弧交于点
,作射线
交边
于点
,若
,则
的面积是( )
A. B.
C. D.
5、如图,在直角中,
,
于点D,则
( )
A.
B.
C.
D.
6、抛物线的顶点坐标是
A.
B.
C.
D.
7、二次函数的图象的顶点在第一象限,且过点(-1,0),设
,则
的取值范围为( )
A.
B.
C.
D.
8、四个实数﹣,1,0,﹣2.5中,最小的实数是( )
A. ﹣ B. 1 C. 0 D. ﹣2.5
9、如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②△ABM≌△NGF;③CP=;④
;其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
10、如图是一个山坡,已知从A处沿山坡前进160米到达B处,垂直高度同时升高80米,那么山坡的坡度为( )
A.30°
B.1∶2
C.1∶
D.∶1
11、如图,在△ABC中,tanA=2,以BC为直径的⊙O分别交AB、AC于点D、点E,若D是AB的中点,OD=5,则AE=_____.
12、已知:x2-4x+4与|y-1|互为相反数,则式子的值等于 .
13、如图,将三角尺的直角顶点放在直尺的一边上,∠1=,∠2=
,则∠3= °.
14、因式分解:9x2﹣81=_____.
15、计算:|﹣|+(
)﹣1=_____.
16、有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为 .
17、已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F,证明:五边形AEBCF是⊙O的内接正五边形.
18、A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):
| 平均数 | 中位数 | 众数 |
|
|
|
|
A店 | 8.5 |
|
|
B店 |
| 8 | 10 |
(1)根据图a数据填充表格b所缺的数据;
(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.
19、对于平面直角坐标系xOy中的点P和⊙M(半径为r),给出如下定义:若点P关于点M的对称点为Q,且r≤PQ≤3r,则称点P为⊙M的称心点.
(1)当⊙O的半径为2时,
①如图1,在点A(0,1),B(2,0),C(3,4)中,⊙O的称心点是 ;
②如图2,点D在直线yx上,若点D是⊙O的称心点,求点D的横坐标m的取值范围;
(2)⊙T的圆心为T(0,t),半径为2,直线yx+1与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙T的称心点,直接写出t的取值范围.
20、某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A等级:8分-10分,B等级:7分-7.9分,C等级:6分-6.9分,D等级:1分-5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;请补全条形统计图;
(2)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(3)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?
21、某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.
22、图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.
(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)
(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积.
23、我们把存在内切圆与外接圆的四边形称为双圆四边形.例如,如图①,四边形ABCD内接于⊙M,且每条边均与⊙P相切,切点分别为E,F,G,H,因此该四边形是双圆四边形.
①
(1)双圆四边形的对角的数量关系是 ,依据是 .
(2)直接写出双圆四边形的边的性质.(用文字表述)
(3)在图①中,连接GE,HF,求证GE⊥HF.
(4)根据双圆四边形与四边形、平行四边形、矩形、菱形、正方形的关系,在图②中画出双圆四边形的大致区域,并用阴影表示.
②
(5)已知P,M分别是双圆四边形ABCD的内切圆和外接圆的圆心,若AB=1,BC=2,∠B=90°,则PM的长为 .
24、我国古代数学著作《孙子算经》中记载这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,问:几何?”其大意为:现有一根木棍,不知道它的长短,用绳子去测量,绳子多了4尺5寸;把绳了对折后再量,绳子又短了1尺,问:木棍有多长?(提示:1尺=10寸)
邮箱: 联系方式: