1、一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( ).
A.m>1 B.m=1 C.m≤1 D.m<1
2、某件品牌上衣经过两次降价,每件零售价由 元降为
元.已知两次降价的百分率都为
,那么
满足的方程是 ( )
A. B.
C. D.
3、如图所示,与
关于点
成中心对称,则下列结论不一定成立的是( )
A.点与点
是对称点
B.
C.
D.
4、计算的结果是( )
A.
B.
C.
D.
5、二次函数图象的顶点坐标是( )
A. B.
C.
D.
6、一个正六边形的外角和是( )
A.540° B.450° C.360° D.180°
7、下列计算正确的是( )
A. B.
C.
D.
8、中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( )
A.
B.
C.
D.
9、2022年2月4日,北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行,中国大陆地区观看人数约3.16亿人. 用科学记数法表示3.16亿是( )
A.
B.
C.
D.
10、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( )
A. B.
C.
D.
11、在中,点
是
的中点,
,
,那么
____________________(用
,
表示).
12、在平面直角坐标系中,函数的图象不动,将
轴、
轴分别向下、向右平移2个单位,那么在新坐标系下抛物线的顶点坐标是______.
13、分解因式:xy―x=_____________.
14、使关于x的分式方程的解为非负数,且使反比例函数
的图象经过第一、三象限时满足条件的所有整数k的和为____________.
15、一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名.
16、如图,已知△ABC的三个顶点均在格点上,则cosA的值为_______.
17、如图,四边形的对角线相交于点
,
,
,过点
,点
分别作
,
,垂足分别为点
、
.
(1)求证:
①;
②;
(2)若,
,求四边形
的面积.
18、如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使得△PBC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)连接CB,在直线CB上方的抛物线上有一点M,使得△BCM的面积最大,求出M点的坐标.
19、如图,在中,
是
边上一点,
,
,求证:
.
20、水果中的牛油果和桔子的维生素含量很高,因此深受人们喜爱,“农夫果园”水果商家11月份购进了第一批牛油果和桔子共300千克,已知牛油果进价每千克15元,售价每千克30元,桔子进价每千克5元,售价每千克10元.
(1)若这批牛油果和桔子全部销售完获利不低于3500元,则牛油果至少购进多少千克?
(2)第一批牛油果和桔子很快售完,于是商家决定购进第二批牛油果和桔子,牛油果和桔子的进价不变,牛油果售价比第一批上涨a%(其中a为正整数),桔子售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,牛油果的销量下降a%,桔子的销量保持不变,结果第二批中已经卖掉的牛油果和桔子的销售总额比(1)中第一批牛油果和桔子销售完后对应最低销售总额增加了2%,求正整数a的值.
21、如图,小明家居住的甲楼AB面向正北,现计划在他家居住的楼前修建一座乙楼CD,楼高为18米,已知冬天的太阳最低时,光线与水平线的夹角为30°,若让乙楼的影子刚好不影响甲楼,则两楼之间距离至少应是多少米?
22、为落实双减政策,某校对九年级学生的作业负担进行了调查,随机抽取部分学生,统计他们平均每门学科的书面作业时间(单位:min),按时间长短分为四个类别:
,
,
,
,将抽样结果制成两幅不完整的统计图.
根据以上信息,回答下列问题:
(1)本次抽样的样本容量为______,
(2)扇形统计图的值为______;
(3)补全条形统计图;
(4)每门学科书面作业不低于,就认为课业负担超重,若该校九年级有900名学生,请估计该校九年级学生课业负担超重的学生人数.
23、某水果超市计划从灵宝购进“红富士”与“新红星”两个品种的苹果.已知2箱红富士苹果的进价与3箱新红星苹果的进价的和为282元,且每箱红富士苹果的进价比每箱新红星苹果的进价贵6元.
(1)求每箱红富士苹果的进价与每箱新红星苹果的进价分别是多少元?
(2)当每箱红富士苹果销售价定为80元时,每周可售出60箱,现决定降价销售.市场调查反映:销售价每降低1元,则每周可多售出4箱(销售单价不低于成本价).当销售价为多少元时(结果取整数),销售红富士苹果每周的利润最大,最大利润为多少元?
24、已知点P是RtABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F。(1)如图1,当点P 为AB 的中点时,连接AF,BE。求证:四边形AEBF是平行四边形;(2)如图2,当点P 不是AB的中点,取AB的中点Q,连接EQ,FQ 。试判断△QEF 的形状,并加以证明。
邮箱: 联系方式: