1、妈妈为儿子十八岁亲手制作一个两层的生日蛋糕.生日蛋糕的三视图及尺寸如下图所示(图中小正方形的边长为1个单位).蛋糕制作好后,需在看得见的部分涂上奶油,则奶油的面积为( )
A.
B.
C.
D.
2、已知,那么
=
A.
B.
C.
D.
3、已知函数,且对于任意实数
关于
的方程
都有四个不相等的实根
,则
的取值范围是( )
A. B.
C. D.
4、在△中,M为BC上一点,
,则△
的面积的最大值为( )
A.
B.
C.12
D.
5、已知数列的通项公式为
,则
( )
A.
B.
C.
D.
6、已知实数x,y满足约束条,则目标函数
的最大值为( )
A. B.
C.
D.
7、等差数列{an}中,a5<0,a6>0且a6>|a5|,Sn是数列的前n项的和,则下列正确的是 ( )
A.S1,S2,S3均小于0, S4,S5,S6 …均大于0
B. S1,S2,…S5均小于0 , S6,S7 …均大于0
C.S1,S2,…S9均小于0 , S10,S11 …均大于0
D.S1,S2,…S11均小于0 ,S12,S13 …均大于0
8、直线与直线
平行,则
=( )
A. B.
C.-7 D.5
9、已知向量,
,
,若
,则向量
在
方向上的投影为
A.
B.
C.
D.
10、下列说法正确的是( )
A.抛掷一枚硬币,正面朝上的概率是,所以抛掷两次一定会出现一次正面朝上的情况
B.某地气象局预报说,明天本地降水概率为,这说明明天本地有
的区域下雨
C.概率是客观存在的,与试验次数无关
D.若买彩票中奖的概率是万分之一,则买彩票一万次就有一次中奖
11、若直线与直线
平行,则实数a的值为( )
A.
B.0
C.2
D.
12、在中,已知
,
,
,
于
,
为
的中点,若
,则
,
的值分别是( )
A.,
B.,
C.,
D.,
13、等比数列的公比为
,前
项的积为
,并且满足
,给出下列结论①
;②
;③
是
中最大的;④使得
成立的最大的自然数是4018.其中正确结论的序号为___.(将你认为正确的全部填上)
14、已知函数图象对称中心和函数
的图象的对称中心完全相同,若
,则函数
的取值范围是____________
15、若复数(i为虚数单位),且
为实数,则实数
______________.
16、设是等差数列
的前
项和,且
,则
_____.
17、已知、
都为正数,且
,若不等式
恒成立,则实数
的取值范围是________.
18、函数,
的值域为______.
19、若函数为偶函数,则
________.
20、函数的单调递减区间为______________.
21、函数的单调递减区间为________.
22、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为,客场取胜的概率为
,且各场比赛结果相互独立,则甲队以
获胜的概率是_____.
23、我市在经济高速发展的同时,根据中央文明委办公室2017年度颁布的《全国文明城市(地级以上)测评体系》标准,特制了创建全国文明城市三年行动计划(2018-2020年).在城市环境卫生的治理方面,经过两年的治理,市容市貌焕然一新,为了调查市民对城区环境卫生的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中.
(1)求被调查市民满意程度的平均数与中位数(精确到小数点后三位);
(2)若按照分层抽样的方式从中随机抽取6人,再从这6人中随机抽取2人,求至少有1人的分数在
的概率.
24、设复数,其中
,当
取何值时:
(1);
(2)是纯虚数;
(3)是零.
25、某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的位顾客的相关数据,如下表所示.已知这
位顾客中一次购物量超过
件的顾客占
%.
一次购物量 |
|
|
|
|
|
顾客数(人) | |||||
结算时间(分钟/人) |
(1)确定的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过分钟的概率.(将频率视为概率)
邮箱: 联系方式: