得到
  • 汉语词
  • 汉语典q
当前位置 :

2024-2025学年(上)广元八年级质量检测数学

考试时间: 90分钟 满分: 120
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共10题,共 50分)
  • 1、如图,PAPB分别与⊙O相切于AB两点,C是⊙O上一点,且∠ACB65°,则∠P等于(   )

    A.45° B.50° C.55° D.60°

  • 2、如图,AB∥CD,AD与BC交于点O,则下列比例式中正确的是( )

    A.

    B.

    C.

    D.

  • 3、下列说法中,正确的有(   )个

    ①对角线相互平分且垂直的四边形是菱形;

    ②一组对边平行,一组对角相等的四边形是平行四边形;

    ③有一个角是直角的四边形是矩形;

    ④对角线相等且垂直的四边形是正方形.

    A.1 B.2 C.3 D.4

  • 4、据省统计局公布的数据,安徽省2019年第二季度GDP总值约为7.9千亿元人民币,若我省后两个季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( ).

    A.

    B.

    C.

    D.

  • 5、下列说法中正确的是(  )

    A. 两个直角三角形一定相似

    B. 两个等腰三角形一定相似

    C. 两个等腰直角三角形一定相似

    D. 两个矩形一定相似

  • 6、下列各数中,比1小的数是(  )

    A.21

    B.20210

    C.|﹣3|

    D.22

  • 7、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是(  )

    A.2

    B.﹣2

    C.2或﹣2

    D.

  • 8、七巧板是古代中国劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,明、清两代在中国民间广泛流传,清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之,在一次数学活动课上,小明用边长为4cm的正方形纸板制作了如图所示的七巧板,并设计了下列四幅“奔跑者“作品,其中阴影部分的面积为5cm2的是(       

    A.

    B.

    C.

    D.

  • 9、一元二次方程(x+3)(x﹣3)=5x的一次项系数是(  )

    A. ﹣5   B. ﹣9   C. 0   D. 5

  • 10、下列事件是必然事件的是(       

    A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次

    B.打开电视,正在播新闻

    C.任意一个三角形的内角和都等于

    D.一个篮球名将在罚球线上投篮,“投中”

二、填空题 (共6题,共 30分)
  • 11、已知,则的值__________.

  • 12、平面直角坐标系中,一点P(-2,3)关于原点的对称点P′的坐标是  

     

  • 13、师梅课外生物小组拟定在桃花岭上建立一个实验园地,其形状是长10米、宽6米的矩形,为便于管理,要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为40平方米,求小道的宽.若设小道的宽为x米,则可列方程为________.(结果化为一般式)

  • 14、已知,则__________.

  • 15、为线段上的两点,,且,若,则的长为__________

  • 16、如图,在平面直角坐标系中,,点A坐标为,过A,垂足为点;过点轴,垂足为点;再过点,垂足为点;再过点轴,垂足为点…;这样一直作下去,则点的坐标为___________

三、解答题 (共8题,共 40分)
  • 17、如图:在平面直角坐标系中,抛物线经过A(—2,—4 ),O(0,0),B(2,0)三点.

    (1)求抛物线的解析式和顶点坐标D.

    (2)若使轴上一点P,使P 到A、D的距离之和最小,求P的坐标.

    (3)若抛物线对称轴上一点M,使AM + OM最小,求AM + OM的最小值.

  • 18、先化简,再求值:,其中

  • 19、如图,在平面直角坐标系xOy中,点A的坐标为(07),点B的坐标为(03),点C的坐标为(30)

    1)在图中利用直尺画出的外接圆的圆心点D,圆心D的坐标为  

    2最小覆盖圆的面积为   ;(用含π的代数式表示)

    3)若点E的坐标(60),点E外接圆   (填“圆内”“圆上”或“圆外”)

  • 20、解方程:

  • 21、九(1)班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题:用点分别表示第1名同学、第二名同学、第三名同学…第48名同学,把该班级人数与通电话次数之间的关系用下图模型表示:

    (1)下图中第四个图中的值为___________,第五个图中的值为___________;

    (2)通过探索发现,通电话次数与该班级人数之间的关系式为___________,当时,对应的___________;

    (3)若九(1)班全体女生相互之间共通话153次,则该班共有多少名女生?

  • 22、若二次函数图象的对称轴方程是直线,并且图象过,求此二次函数的解析式.

  • 23、在平面直角坐标系中,已知抛物线m为常数)

    (1)若该抛物线与x轴的一个交点为(1,0),求m的值及该抛物线与x轴的另一个交点坐标;

    (2)不论m取何实数,该抛物线都经过定点G.求点G的坐标,并通过计算判断点G是否是所有抛物线顶点中纵坐标最大的点?

  • 24、某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.

    (1)试确定月销售量与售价之间的函数关系式,并求出售价的范围;

    (2)当售价定为多少时,商场每月销售这种空气净化器所获的利润最大,最大利润是多少?

查看答案
下载试卷
得分 120
题数 24

类型 单元测试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
掌乐网(zle.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线掌乐网,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 掌乐网 zle.com 版权所有 闽ICP备18021446号-6