1、一元二次方程根的情况是( )
A.没有实数根
B.只有一个实数根
C.有两个相等的实数根
D.有两个不相等的实数根
2、-3的相反数是( )
A.3
B.-3
C.0
D.±3
3、如果将二次函数y=3x2的图象向上平移5个单位,得到新的图象的二次函数表达式是( )
A.y=3x2-5 B.y=3(x-5)2
C.y=3x2+5 D.y=3(x+5)2-5
4、下列四个函数图象中,当时,
随
的增大而增大的是
5、八年级2班有9名团员,其中有5名女生,其余的是男生.现从该班随机抽取1名,其中抽到是女团员的概率是( )
A.
B.
C.
D.
6、的倒数是 ( )
A.
B.
C.
D.
7、四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ).
A.
B.
C.
D.1
8、下列图案中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
9、如果二次函数的图像全部在x轴的下方,那么下列判断中正确的是
A. a<0,b<0 B. a>0,b<0
C. a<0,c>0 D. a<0,c<0
10、的相反数是( )
A.
B.
C.
D.
11、已知正六边形ABCDEF内接于⊙O,图中阴影部分的面积为,则⊙O的半径为______.
12、为为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字“中”“考”“必”“胜”;转盘二被三等分,分别写有汉字“我”“必”“胜”.将两个转盘各转动一次(当指针指向区域分界线时,不记,重转),若得到“必”“胜”两字,则获得游戏一等奖,请求出获得游戏一等奖的概率为________.
13、已知抛物线y=﹣2(x+m)2﹣3,当x≥1时,y随x的增大而减小,那么m的取值范围是_____.
14、如图,若内一点
满足
,则称点
为
的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知
中,
,
,
为
的布罗卡尔点,若
,则
________.
15、若关于x的方程x2﹣kx﹣12=0的一个根为2,则k的值为 _____.
16、在等腰中,
,
,将
的一角沿着
折,点
落在
边上的
处若
与
相似,则
的长度为__________.
17、如图1,矩形AEGH的顶点E、H在矩形ABCD的边上,且AD:AB=AH:AE=1:2.
(1)请直接写出HD:GC:EB的结果(不必写计算过程);
(2)如图2,矩形AEGH绕点A旋转一定角度,此时HD:GC:EB的结果与(1)的结果有变化吗?如有变化,写出变化后结果并说明理由;若无变化,请说明理由.
18、如图,在平面直角坐标系中,的顶点均在格点上,点A的坐标
,点B的坐标为
,点C的坐标为
.
(1)请画出关于原点O成中心对称的
;
(2)请画出绕原点O逆时针旋转
后得到的
;
(3)试求问题(2)中A在运动过程中经过的路径的长度.
19、如图1,直线交x轴于点A,经过点A的抛物线
交直线
于另一点
,交x轴于点C.
(1)直接写出抛物线的解析式及点C的坐标;
(2)如图2,点P为抛物线对称轴上的一点,且,求点P的纵坐标m的值;
(3)将线段先向右平移1个单位长度,再向上平移5个单位长度,得到线段
,若抛物线
与线段
只有一个交点,请直接写出a的取值范围.
20、如图,直线与
轴、
轴分别交于
、
两点,
是线段
上的动点(不与
、
重合),将
绕点
顺时针旋转
得到点
,连接
,求
的最小值.
21、已知在△ABC中,∠C=90°,AB=4,AC=.
(1)求BC;
(2)求sin∠A.
22、某校数学社团利用自制测角仪和皮尺测量河宽(把河两岸看成平行线).如图,他们在河岸MN一侧的A处,观察到对岸P点处有一棵树,测得,向前走45m到达B处,测得
.(
,
,
,
)
(1)求河的宽度(精确到1m);
(2)据河道建造碑文记载,该河实际宽70m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
23、如图,抛物线经过点
,
,
.
(1)求抛物线的解析式;
(2)若点为抛物线对称轴上一点,求
周长取得最小值时点
的坐标;
(3)设抛物线的顶点为,
轴于点
,在
轴上是否存在点
使得
是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
24、如图,在平面直角坐标系中,的顶点坐标分别为
、
、
,
是
的边
上一点.
(1)以原点O为位似中心,在y轴的右侧画出的一个位似
,使它与
的相似比为
,并分别写出点
、
的对应点
、
的坐标;
(2)画出将向左平移2个单位,再向上平移1个单位后的
,并写出点
、
的对应点
、
的坐标;
(3)判断与
,能否是关于某一点
为位似中心的位似图形,若是,请在图中标出位似中心
,并写出点
的坐标.
邮箱: 联系方式: