1、已知与多项式
的和为0,其中a,b为常数,是
的值是( )
A.
B.7
C.3
D.
2、方程的解是( )
A. B.
C.
D.
3、下列计算正确的是( )
A.
B.
C.
D.
4、如图, BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为( )
A.2
B.4
C.6
D.10
5、七(1)班班长买钢笔和铅笔共30支,其中钢笔的支数比铅笔支数的2倍少3支.若设买钢笔支,铅笔
支,根据题意,可得方程组( )
A.
B.
C.
D.
6、下列计算正确的是( )
A.﹣x2﹣3x=﹣4x
B.2x×4x3=8x4
C.(﹣a2b)3=a6b3
D.a2b÷(﹣ab2)=﹣ab
7、如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )
A. 2对 B. 3对 C. 4对 D. 5对
8、已知正比例函数y=kx(k≠0)的图象经过(a+3,b﹣2),(a,b+4),则k的值为( )
A.﹣2
B.2
C.﹣
D.
9、若二次根式有意义,则x的取值范围是( )
A.
B.
C.
D.
10、由一些完全相同的小正方体搭成的几何体的主视图、俯视图如图所示,那么搭成这个几何体至少需用小正方体的个数是( )
A. 8个 B. 7个 C. 6个 D. 5个
11、如果关于x的方程有两个相等的实数根,那么a=________.
12、已知二次函数的图像(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为____________,最小值为____________.
13、如图,在△
中,
,
,斜边
上的垂直平分线交
,
于点
,
,则
________度.
14、如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是 .
15、以线段AB为底边的等腰三角形,它的两底角平分线交点的轨迹是_____.
16、抛物线与
轴的交点坐标是___________.
17、解下列方程:
(1)5(x+8)=6(2x-7)+5;
(2).
18、如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B、C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.
(1)求a、c的值;
(2)连接OF,求△OEF的周长;
(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.
19、如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表达线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.
20、解方程(组)
(1)
(2)
21、已知x=-,能否确定代数式(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值?如果能确定,试求出这个值。
22、解不等式
23、如图,在平面直角坐标系中,三角形三个顶点的坐标分别为
.点P
是三角形
的边
上任意一点,三角形
经过平移后得到三角形
,已知点
的对应点
.
(1)在图中画出平移后的三角形,并写出点
的坐标;
(2)求三角形的面积.
24、某种规格小纸杯的侧面是由一半径为、圆心角是
的扇形
剪去一半径
的同心圆扇形
所围成的(不计接缝)(如图1).
(1)求纸杯的底面半径和侧面积(结果保留);
(2)要制作这样的纸杯侧面,如果按照图2所示的方式剪裁(不允许有拼接),至少要用多大的矩形纸片?
(3)如图3,若在一张半径为的圆形纸片上剪裁这样的纸杯侧面(不允许有拼接),最多能裁出多少个?
邮箱: 联系方式: