1、计算t6•t2的结果是( )
A.t4
B.t8
C.2t8
D.t12
2、如图,数轴上两点分别对应有理数
,则下列结论:①
;②
;③
;④
,⑤
.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
3、如图,平行四边形中,
,则
等于( ).
A.120°
B.110°
C.70°
D.30°
4、已知的扇形的圆心角为,半径长为
,则该扇形的弧长为
A. B.
C.
D.
5、一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为5s,则此人下降的高度为( )
A.90m B.45m C.45
m D.90m
6、在平面直角坐标系中,点A(m,﹣1)和点B(﹣2,n)关于x轴对称,则mn等于( )
A. ﹣2 B. 2 C. 1 D. ﹣1
7、如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A. 1: B. 1:
C. 1:2 D. 2:3
8、下列冬奥会的会徽图案中,是轴对称图形的是( )
A.
B.
C.
D.
9、下列计算:①;②
;③
;④
.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
10、若(-2x+a)(x-1)中不含x的一次项,则( )
A.a=1
B.a=-1
C.a=-2
D.a=2
11、如图,在平面直角坐标系中,菱形的顶点
在坐标原点,边
在
轴的负半轴上,
,顶点
的纵坐标为
,反比例函数
的图像与菱形对角线
交于
点,连接
,当
轴时,
的值是__________.
12、如图,在中,
,
的平分线
交
于点
.若
,则点
到直线
的距离=______.
13、方程组的解是_________.
14、___.
15、已知∠AOB=78°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为 ______ .
16、在如下图扇形统计图中,根据所给的已知数据,若要画成条形统计图,甲、乙、 丙三个条形对应的三个小长方形的高度比为_________.
17、先化简再求值:
(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=﹣3;
(2)2a2﹣[(ab﹣4a2)+8ab]﹣
ab,其中a=1,b=
.
18、某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
19、已知:如图,AD、BF相交于点O,点E、C在BF上,BE=FC,AC=DE,AB=DF.求证:OA=OD,OB=OF.
20、如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.
(1)求证:AC为⊙O的切线;
(2)若CF=1,tan∠EDB=2,求⊙O的半径.
21、如图1,在直角△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作圆O
(1)求证:AB是⊙O的切线;
(2)已知AO交圆O于点E,延长AO交圆O于点D,tan∠D=,求
的值;
(3)如图2,在(2)条件下,若AB与⊙O的切点为点F,连接CF交AD于点G,设⊙O的半径为3,求CF的长.
22、为保障蔬菜基地种植用水,需要修建灌溉水渠.计划先由甲、乙两队合作修建30天,剩下的工程再由乙队单独做15天完成,若甲、乙两队单独完成这项工程所需天数之比为2:3.求甲、乙两队单独修建灌溉水渠各需多少天?
23、如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)
(1)求B点坐标;
(2)如图2,若C为x正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连接OD,求∠AOD的度数;
(3)如图3,过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式AM=FM+OF是否成立?若成立,请说明;若不成立,说明理由.
24、如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线 BA–AD–DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1 cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.
请根据图中的信息,解答下列问题:
(1)AD= cm,BC= cm;
(2)求a的值,并用文字说明点N所表示的实际意义;
(3)直接写出当自变量t为何值时,函数y的值等于5.
邮箱: 联系方式: