1、某校篮球队员的身高(单位:cm)如下:167,168,167,164,168,168,163,168,167,160,获得这组数据所用的方法是( ).
A.问卷调查 B.查阅资料
C.实地调查 D.实验
2、已知,若b是整数,则a的值可能是( )
A. B.
C.
D.
3、如图,是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小立方块的个数,这个几何体的左视图是( )
A. B.
C.
D.
4、在中,
平分
,交
于点
,
于
,且
,则
的周长为( )
A. B.
C.
D.不能确定
5、用配方法解方程,下列配方正确的是( )
A.
B.
C.
D.
6、如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是( )
A.
B.
C.
D.
7、图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓( )
A. 1个 B. 2个 C. 3个 D. 4个
8、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )
A.32人
B.40人
C.48人
D.50人
9、一个图形无论经过平移还是旋转,有以下说法:
(1)对应线段平行;
(2)对应线段相等;
(3)对应角相等;
(4)不改变图形的形状和大小,
其中正确的有()
A.(1)(2)(3)
B.(1)(2)(4)
C.(1)(3)(4)
D.(2)(3)(4)
10、城镇人口占总人口比例的大小表示城填化水平的高低。由下面统计图可知,我国城镇化水平提高最快的时期是/( )
A. 1953~1964 B. 1964~1982 C. 1982~1990 D. 1990~2002
11、若,则
________.
12、若点B的坐标为(2,1),AB//x轴,且AB=4,则点A的坐标为_____.
13、某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.某同学得分不低于80分,那这名同学至少要答对_________道题.
14、一组数据1,3,2,5,x的平均数为3,那么这组数据的中位数是____.
15、已知无论n取什么实数,点P(n, 2n-3)都在直线l上,若Q(a,b)是直线l上的点,则b-2a的值等于 .
16、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).
17、先化简,再求值:,其中
.
18、解方程:.
19、点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:
(1)数轴上表示﹣2和8两点之间的距离是________.
(2)数轴上表示x和﹣4两点A和B之间的距离表示为__________;如果AB=2,那么x=___________.
(3)若点C表示的数为x,当点C在什么位置时,| x+1|+|
x−1|取得的值最小,并直接写出最小值。
20、“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 | 清理养鱼网箱人数/人 | 清理捕鱼网箱人数/人 | 总支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,则至少安排多少人清理养鱼网箱?
(3)在第(2)问的条件下,若要求清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
21、如图,E是矩形边
上一点,
,
.将矩形
沿
折叠,点B的对称点为
.当点
恰好落在边
上时,求
的长.
22、如图,已知抛物线y1=﹣x2+
x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.
(1)△ABC是 三角形;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)结合图象,写出满足y1>y2时,x的取值范围 .
23、如图,已知点C在线段AB上,AB=20,BC=AC,点D,E在射线AB上,点D在点E的左侧.
(1)DE在线段AB上,当E为BC中点时,求CE的长;
(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;
(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求的值.
24、“宜居襄阳”是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)统计图共统计了 天的空气质量情况;
(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是 ;
(3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是 .
邮箱: 联系方式: