1、如图,,
分别与
相切于
,
两点,点
在
上,
,则
的度数为( )
A. B.
C.
D.
2、下列实数中,比3大的数是( )
A.
B.0
C.1
D.
3、如图,在平面直角坐标系中,A(0,),B(6,0),点P 为线段AB的中点,将线段AB绕点O逆时针旋转90°后点P的对应点P/的坐标是( )
A.(-3,) B.(
,3) C.(
,-3) D.(-1,
)
4、下列方程中是二元一次方程的是( )
A. B.
C.
D.
5、将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )
A.(,﹣1)
B.(1,﹣)
C.(,﹣
)
D.(﹣,
)
6、如图,在△ABC中,∠ACB=90°,AC=BC,过点B作BE⊥AB于B,D为AB边上一点且AD=BE,连接CD,DE,若CD=2,则DE的长为( )
A. B.4 C.
D.6
7、2022年5月,教育部发布《义务教育劳动课程标准(2022年版)》,其中根据不同学段制定了相应的学段目标.某学校为了让学生热爱劳动,尊重劳动,在劳动中提升综合素质,定期开展课外劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1000千克土豆与乙班挖800千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖80千克土豆,设乙班平均每小时挖千克的土豆,依题意,下面所列方程正确的是( )
A.
B.
C.
D.
8、如图,身高为1.7 m的小明AB站在河的一岸,利用树的倒影去测量河BD的宽度,CD在水中的倒影为C′D,A,E,C′在一条直线上,已知树CD的高度为5.1 m,BE=3 m,则河BD的宽度是( )
A. 9 m B. 12 m C. 15 m D. 18 m
9、如图,一块矩形木板ABCD斜靠在墙边,(,点A、B、C、D、O在同一平面内),已知
,
,
.则点A到OC的距离等于( )
A.
B.
C.
D.
10、2022年1月20日,河南省统计局公布2021年全省地区生产总值为58887.41亿元,同比增长6.3%.这里的近似数“58887.41亿”是精确到( )
A.百万位
B.亿位
C.万位
D.百分位
11、如图,将△ABC沿着过BC的中点D的直线折叠,使点B落在AC边上的处,称为第一次操作,折痕DE到AC的距离为
;还原纸片后,再将△BDE沿着过BD的中点
的直线折叠,使点B落在DE边上的
处,称为第二次操作,折痕
到AC的距离记为
;按上述方法不断操作下去…经过第n次操作后得到折痕
到AC的距离记为
,若
,则
的值为______.
12、如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k=____________.
13、已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .
14、计算:__________.
15、某人在斜坡上走了26米,上升的高度为10米,那么这个斜坡的坡度____.
16、二次函数 中,二次项系数为____,一次项是____,常数项是___
17、【问题情境】(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是 ;
【类比探究】
(2)如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;
【拓展提升】
(3)如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为 .
18、已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.
(1)求二次函数的解析式;
(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;
(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN为菱形,求直线MN的解析式.
19、老师计算学生的学期总评成绩按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下所示:
学生 | 平时作业 | 单元测验 | 期中考试 | 期未考试 |
小丽 | 80 | 75 | 71 | 88 |
小明 | 76 | 80 | 70 | 90 |
请你通过计算,比较谁的学期总评成绩高?
20、已知是
的直径,
是
的弦,连接
.
(1)如图1,连接,
.若
,求
及
的大小;
(2)如图2,过点C作的垂线,交
的延长线于点E,连接
.若
,
,求
的大小.
21、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,已知M为抛物线的顶点.
(1)求抛物线的表达式;
(2)求△MCB的面积;
(3)根据图形直接写出使直线MC表示的一次函数值大于二次函数值的x的取值范围.
22、列方程解应用题:
老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:
考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。
23、在平面直角坐标系中,抛物线
与
轴交于
,
两点,与直线
:
交于点
、
两点.
(1)求抛物线解析式及顶点的坐标.
(2)求点的坐标,并结合图象写出不等式
的解集.
(3)将直线向下平移,在平移过程中与抛物线
部分图象有交点时
包含
,
端点
,请直接写出
的取值范围.
24、如图所示,试确定灯泡所在的位置.
邮箱: 联系方式: