1、如图所示,在⊙O中,=
,∠A=30°,则∠B=( )
A.150° B.75° C.60° D.15°
2、在《数据分析》章节测试中,“勇往直前”学习小组位同学的成绩分别是
.这组数据的中位数和众数分别是( )
A.
B.
C.
D.
3、一元二次方程x2-25=0的解是( )
A. x1=x2=5 B. x1=x2=25 C. x1=25,x2=-25 D. x1=5,x2=-5
4、若方程是关于x的一元二次方程,则( )
A. B. m=2 C. m= -2 D.
5、现有三张正面分别标有数字,
,
的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为
,
,则点
在第二象限的概率为( )
A.
B.
C.
D.
6、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是( )
A.△PAB∽△PCA
B.△ABC∽△DBA
C.△PAB∽△PDA
D.△ABC∽△DCA
7、喜迎国庆佳节,天音百货某服装原价400元,连续两次降价a%后售价为225元.下列所列方程中,正确的是( )
A.400(1+a%)2=225
B.400(1-2a%)=225
C.400(1-a%)2=225
D.400(1-a2%)=225
8、如图,在矩形中,
在
上,
,交
于
,连结
,则图中与
一定相似的三角形是
A. B.
C.
D.
和
9、下列计算正确的是( )
A.a2+a3=a5
B.(a3)2=a5
C.a2×a3=a5
D.(a2)3=a5
10、如图,将绕顶点C逆时针旋转角度
得到
,且点B刚好落在
上.若
,
,则
等于( )
A.36°
B.37°
C.38°
D.39°
11、若用因式分解法解一元二次方程4(x+2)2-9(2x-1)2=0,首先将左端的式子用_____公式分解为[2(x+2)+3(2x-1)][2(x+2)-3(2x-1)]=0,从而求得方程的根为_____
12、如图,在平面直角坐标系中,点M的坐标为(,2),则cosα的值为_____.
13、已知(y2+1)2+(y2+1)-6=0,那么y2+1=________.
14、已知一组数据:1,3,3,4,6,则这组数据的众数是________.
15、如图,在边长为4正方形ABCD中,以AB为腰向正方形内部作等腰△ABE,点G在CD上,且CG=3DG.连接BG并延长,与AE交于点F,与AD延长线交于点H.连接DE交BH于点K.若AE2=BF•BH,则S△CDE=__.
16、如图,正方形的边
在正方形
的边
上,
是
的中点,
的平分线
过点
,交
于点
,连接
,
,
与
交于点
,对于下面四个结论:①
;②
且
;③
;④
,其中正确结论的序号为__________.
17、在平面直角坐标系xoy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X矩形”.下图为点P,Q的“X矩形”的示意图.
(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为___.
(2)点M,N的“X矩形”是正方形,
①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标.
②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围___.
18、解方程:
(1)
(2)
19、某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数(件)与价格
(元/件)之间满足一次函数关系.
(1)、试求与
之间的函数关系式;
(2)、当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
20、已知抛物线的顶点坐标是(3,2),且经过点(1,-2). 求这条抛物线的解析式.
21、关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
22、有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元;买两台,每台都为760元.依次类推,即每多买一台,所买各台单价均再减20元,但最低不能低于每台440元.乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7 500元在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的?数量是多少?
23、如图,夜晚,小华利用路灯A测量建筑物GF的高度,他在点D处竖立了一根木杆CD,测得木杆CD的影长DE=1.5m,AB⊥EG,CD⊥EG,GF⊥EG.
(1)在图中画出表示建筑物GF影子的线段GH;
(2)已知木杆的高CD=2m,建筑物GF的影子GH=7.8m,木杆CD与路灯杆AB之间的距离BD=5.85m,路灯杆AB与建筑物GF之间的距离BG=6.9m,请你根据题中提供的相关信息,求出建筑物GF的高度.
24、已知直线a和直线外的两点A、B,经过A、B作一圆,使它的圆心在直线a上.
邮箱: 联系方式: