1、若方程x2+(2a-1)x+a2=0与方程2x2-(4a+1)x+2a-1=0中至多有一个方程有实数根,则a的取值范围是( )
A.a> B.a<-
C.
≤a≤
D.a<-
或a>
2、如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是( )
A. B.
C. 5 D. 无法确定
3、如图是二次函数的图象的一部分,图象过点
,二次函数的对称轴为
,给出下列结论:①
;②
;③
;④
;⑤当
时,
,其中正确的是( )
A.②③⑤
B.①③
C.②③
D.①④⑤
4、如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,AB=6,则BD的长为( )
A.3
B.3
C.5
D.5
5、关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A.
B.
C.
D.
6、已知x=,y=
,则x2+xy+y2的值为( )
A. 2 B. 4 C. 5 D. 7
7、 在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )
A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF
8、如图,在中,点D为
上一点,且
,过点D作
,交
于点E,过点E作
,交
于点F,下列结论正确的是( )
A.
B.
C.
D.
9、下列说法错误的是( )
A.必然事件的概率为1
B.数据1、2、2、3的平均数是2
C.连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上
D.如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖
10、据统计,2019年“十•一”国庆长假期间,张掖市共接待国内外游客约31.9万人次,与2018年同比增长16.43%,数据31.9万用科学记数法表示为( )
A.3.19×105
B.3.19×106
C.0.319×107
D.319×106
11、如图,四边形ABCD的各边与⊙O分别相切于点E、F、G、H.若AB=4cm,AD=3cm,BC=3.6cm,则CD= ________cm.
12、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,
其中,正确的结论是______.(写出正确结论的序号)
13、已知x1=3是关于x的一元二次方程x2-4x+c=0的一个根,则方程的另一个根x2是_______
14、若,则
__________.
15、如图,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若AF=2,则的面积为__.
16、直角三角形的斜边比一直角边长4cm,另一直角边长为8cm,则它的斜边长是_____cm.
17、已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.
(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长.
18、已知:如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE。
(1)求证:∠DAE=∠DCE; (2)求证:AE2=EF·EG。
19、如图,图1是某仓库的实物图片,图2是该仓库屋顶(虚线部分)的正面示意图,BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,AD=3米,在B点测得A点的仰角为30°,在E点测得D点的仰角为20°,EF=6米,求BE的长.(结果精确到0.1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.73)
20、如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).
(1)求m、k的值;
(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;
(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.
21、如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为.
22、如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3,求BD和FG的长度.
23、如图①和图②,在中,
.
(1)【问题】如图①,将绕点A逆时针旋转
,得到
,延长
交
于点F,则
与
的数量关系是__________;
(2)【探索】如图②,将绕点A逆时针转转
,得到
,延长
交
于点F,连接
.
①和
的数量关系是__________,
__________;
②求;
③连接,若
,求
的长;
(3)【应用】如图③,在中,
.
中,
,
,
,连接
,求
的长.
24、某学校开展“我的中国梦”演讲比赛'学校准备购买10支某种品牌的水笔,每支水笔配x(x≥2)支笔芯,作为比赛获得一等奖学生的奖品。A、B两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元。目前两家文具店同时在做促销活动:A文具店:所有商品均打九折(按标价的90%)销售;B文具店:买一支水笔送2支笔芯.设在A文具店购买水笔和笔芯的费用为yA(元),在B文具店购买水笔和笔芯的费用为yB(元)。请解答下列问题:
⑴分别写出yA、yB与x之间的函数表达式;
⑵若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠?
⑶若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.
邮箱: 联系方式: