1、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )
A.
B.
C.
D.
2、如图,,
,
是
上的三个点,
,
,则
的度数是( )
A.
B.
C.
D.
3、关于抛物线的判断,下列说法正确的是( ).
A.抛物线的开口方向向上
B.抛物线的对称轴是直线
C.在抛物线对称轴左侧,随
增大而减小
D.抛物线顶点到轴的距离是2
4、四位学生用计算器求sin62°20′的值正确的是( )
A. 0.8857 B. 0.8856 C. 0.8852 D. 0.8851
5、已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c=0无实数根;③a-b+c≥0;④的最小值为3,其中正确结论的个数是( )
A.1 个 B.2 个 C.3 个 D.4 个
6、观察下列图形规律,其中第一个图形由6个○组成,第2个图形由14个○组成,第3个图形由24个○组成……照此规律下去,则第7个图形○的个数一共是( ).
A.69 B.74 C.84 D.87
7、纳米是非常小的长度单位,1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.2.51×10-5米
B.25.1×10-6米
C.0.251×10-4米
D.2.51×10-4米
8、定义:对于二次函数y=ax2+(b+1)x+b﹣2(a≠0),若存在自变量x0,使得函数值等于x0成立,则称x0为该函数的不动点,对于任意实数b,该函数恒有两个相异的不动点,则实数a的取值范围为( )
A.0<a<2
B.0<a≤2
C.﹣2<a<0
D.﹣2≤a<0
9、如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是( )
A. B.
C. D.
10、如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )
A. B.
C.
D.
11、分解因式:_____.
12、如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A为圆心, AB为半径的扇形,则扇形的圆心角∠DAB的度数是___________度.(结果保留)
13、为了了解我市9000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:
①这9000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中说法正确的有________个.
14、如图,矩形ABCD中,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为 .
15、若关于x的一元二次方程ax2﹣4x+1=0有实数根,则a的最大整数值为_____.
16、在矩形ABCD中,AB=9cm,E是直线CD上一点,连接AC,BE,若AC与BE交于点F且DE=3cm,则EF:BE的值是_____.
17、计算:|-2|+20190-(-
)-1+3tan30°.
18、计算:
(1);
(2)。
19、某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.
20、从2021年秋季开学以来,全国各地中小学都开始实行了“双减政策”.为了解家长们对“双减政策”的了解情况,从某校1200名家长中随机抽取部分家长进行问卷调查,调直评价结果分为“了解较少”“基本了解”“了解较多”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.
(1)本次抽取家长共有________人,扇形图中“基本了解”所占扇形的圆心角是________;
(2)估计此校“非常了解”和“了解较多”的家长共有多少人?
(3)学校计划从“了解较少”的家长中抽取1位初一学生家长,1位初二学生家长,2位初三学生家长参加培训,若从这4位家长中随机选取两人作为代表,请通过列表或面树状图的方法求所选出的两位家长既有初一家长,又有初二家长的概率.
21、如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
22、计算:2x3•x3+(3x3)2﹣5x6.
23、一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.
24、已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.
(Ⅰ)如图①,若∠BAC=250,求∠AMB的大小;
(Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.
邮箱: 联系方式: