1、如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( )
A.sinA=
B.cosA=
C.tanA=
D.tanB=
2、下列计算的结果是a6的为( )
A. a12÷a2 B. a7﹣a C. a2•a4 D. (﹣a2)3
3、对于这类特殊的三次方程可以这样来解.先将方程的左边分解因式:
,这样原方程就可变为
,即有
或
,因此,方程
和
的所有解就是原方程的解.据此,显然
有一个解为
,设它的另两个解为
,
,则式子
的值( )
A.
B.1
C.
D.7
4、如果一个负数大于它的倒数,那么,这个负数是( )
A.真负分数
B.分数
C.整数
D.假分数
5、如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是( )
A.甲 B.乙 C.丙 D.丁
6、如图所示,几何体的主视图是( )
7、不等式组的解集在数轴上表示正确的是( )
A. B.
C.
D.
8、下列图形中,既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D.
9、如图,▱ABCD中,点E在边BC上,以AE为折痕,将△ABE向上翻折,点B正好落在CD上的点F处,若△FCE的周长为7,△FDA的周长为21,则FD的长为( )
A.5
B.6
C.7
D.8
10、今年是我市实现跨越式发展的机遇之年,在新引进的某国家重点项目规划中计划总投入约14 8亿元.14 8亿元用科学记数法表示为( )
A. 元 B.
元 C.
元 D.
元
11、若二次函数的顶点在x轴上,则
__________.
12、如图,点D在以AC为直径的⊙O上,如果∠BDC=15°,那么∠ACB=_____.
13、设的小数部分为a,则(4a)a的值是__________.
14、如图,将△ABC沿着CE翻折,使点A落在点D处,CD与AB交于点F,恰好有CE=CF,若DF=6,AF=14,则tan∠CEF=__.
15、数学课上,王老师让同学们对给定的正方形,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:
甲同学:,
,
,
;
乙同学:,
,
,
;
丙同学:,
,
,
;
丁同学:,
,
,
;
上述四名同学表示的结果中,四个点的坐标都表示正确的同学是__________.
16、上海市居民用户燃气收费标准如下表:
某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是______________
17、如图,在矩形ABCD中,EF经过对角线BD的中点O,分别交AD,BC于点E,F
(1)求证:△BOF≌△DOE;
(2)若AB=4cm,AD=5cm,当EF⊥BD时,求四边形ABFE的面积.
18、如图
(1)如图1,在三角形纸片ABC中,∠ACB=90°,AC=4,BC=3,将△ABC折叠,使点B与点C重合,折痕为MN,求CM的长.
(2)如图2,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为M,求的值.
(3)如图3,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B'处,折痕为CM.
i)求线段AC的长;
ⅱ)若点O是边AC的中点,点P为线段OB'上的一个动点,将△APM沿PM折叠得到△A'PM,点A的对应点为点A',A'M与CP交于点F,求的取值范围.
19、某校举办学生综合素质大赛,分“单人项目”和“双人项目”两种形式,比赛题目包括下列五类:.人文艺术;
.历史社会;
.自然科学;
.天文地理;
.体育健康.
(1)若小明参加“单人项目”,他从中抽取一个题目,那么恰好抽中“自然科学”类题目的概率为_____.
(2)小林和小丽参加“双人项目”,比赛规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,求他们抽到“天文地理”和“体育健康”类题目的概率是多少?(用画树状图或列表的方法求解).
20、如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).
(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)
(2)若梯形ODBC的面积为,求双曲线的函数解析式.
21、学习完正多边形和圆后,在师生共同小结与归纳时,下面有几位同学谈了自己的想法.
针对以上三位同学的意见,谈谈自己的想法.
22、如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.
(1)求证:AM=AE;
(2)连接CM,DF=2
①求菱形ABCD的周长;
②若∠ADC=2∠MCF,求ME的长.
23、计算:.
24、如图,已知抛物线y=与x轴交于A、B两点.
(1)点A的坐标是 ,点B的坐标是 ,抛物线的对称轴是直线 ;
(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C 在点D的左边).若CD:AB=3:4,求m的值;
(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b0)与 x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.
邮箱: 联系方式: