1、下列各数中,是无理数的是( )
A. cos30° B. (﹣x)0 C. ﹣ D.
2、如图,已知,
,
,
的角平分线交
于点
,点
是
上一个动点,以
,
为一组邻边构造平行四边形
,连结
,则
的最小值是( )
A. B.
C.
D.8
3、如图,AB与⊙O切于点B,OB=3,C是OB上一点,连接AC并延长与⊙O交于点D,连接OD,∠A=40°,∠D=30°,则的长为( )
A. B.π C.
D.
4、如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )
A. B.
C.
D.
5、抛物线关于
轴对称后所得到的抛物线解析式为( )
A.
B.
C.
D.
6、如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )
A.
B.
C.
D.
7、如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为( )
A.138°
B.128°
C.117°
D.102°
8、如图,在中,
,
,
,将
绕点
按逆时针旋转
得到
,连接
,则
的长为( )
A.3
B.4
C.5
D.6
9、2018年精准脱贫,农村贫困人口减少1386万数据1386万,科学记数法表示( )
A.1.386×108 B.1.386×103 C.13.86×107 D.1.386×107
10、如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出
( )
A.1
B.
C.
D.
11、在一个不透明的盒子中有1个白球和2个红球,它们除颜色外其余都相同,从盒子里任意摸出2个球,则摸出的两个球都是红球的概率是________.
12、如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB,垂足为D,tan∠ACD=,AB=5,那么CD的长是_____.
13、已知ab=10,a+b=7,则a2b+ab2=__________.
14、某市今年参加中考的学生大约为51000人,将数51000用科学计数法可以表示为________
15、分式方程的解为______.
16、如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是 .
17、在平面直角坐标系中,O为原点,点A(−4,0),点B(0,3),△ABO绕点B顺时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为α.
(1)如图1,若α=90°,求AA′的长;
(2)在(1)的条件下,边OA上 的一点M旋转后的对应点为N,当O′M+BN取得最小值时,在图中画出求点M的位置,并求出点N的坐标。
(3)如图2,在△ABO绕点B顺时针旋转过程中,以AB、A′B为邻边画菱形AB A′E,F是AB的中点,连A′F交BE于P,BP的垂直平分线交AB于K,当α从60°到90°的变化过程中,点K的位置是否变化?若不变,求BK的长并直接写出此变化过程中点P的运动路径长.
18、如图,已知一次函数与反比例函数
(
)的图象交于
,
两点,且与
轴和
轴分别交于点
、点
.
(1)求反比例函数与一次函数的表达式;
(2)点在
轴上,且
,请求出点
的坐标.
19、某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小张抽样调查单位3名职工的健康指数
年龄 | 26 | 42 | 57 |
健康指数 | 97 | 79 | 72 |
表2:小王抽样调查单位10名职工的健康指数
年龄 | 23 | 25 | 26 | 32 | 33 | 37 | 39 | 42 | 48 | 52 |
健康指数 | 93 | 89 | 90 | 83 | 79 | 75 | 80 | 69 | 68 | 60 |
表3:小李抽样调查单位10名职工的健康指数
年龄 | 22 | 29 | 31 | 36 | 39 | 40 | 43 | 46 | 51 | 55 |
健康指数 | 94 | 90 | 88 | 85 | 82 | 78 | 72 | 76 | 62 | 60 |
根据上述材料回答问题:
(1)扇形统计图中老年职工所占部分的圆心角度数为
(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.
20、如图1,矩形ABCD中,,
,E为AB上一点,F为AB延长线上一点,且
.点P从A点出发,沿AD方向以4cm/s的速度向D运动,连结PE、PF,PF交BC于点H.设点P运动的时间为
,
的面积为
,当
时,
的面积
关于时间
的函数图象如图2所示.
(1)AE的长是______cm;
(2)当,是否存在以PH为直径的圆与矩形ABCD的其中一边相切?如果存在,求出t的值;如果不存在,请说明理由.
(3)如图3,将沿线段BF进行翻折,与CB的延长线交于点M,连结AM,当t为何值时,四边形PAMH为菱形?
21、(1)【基础巩固】如图1,△ABC内接于⊙O,若∠C=60°,弦,则半径r=______;
(2)【问题探究】如图2,四边形ABCD内接于⊙O,若∠ADC=60°,AD=DC,点B为弧AC上一动点(不与点A,点C重合)求证:AB+BC=BD
(3)【解决问题】如图3,一块空地由三条直路(线段AD、AB、BC)和一条道路劣弧围成,已知
千米,∠DMC=60°,
的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在
上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP的周长)最大?若存在,求其最大值;若不存在,说明理由.
22、如图,在平面直角坐标系中,点P的坐标为(a、b),且a、b满足a2+4a+4=,点B为x轴上动点,过点P作PC⊥y轴于点C.
(1)求O、P两点间的距离;
(2)如图1,点A为y轴正半轴上一点,连接PA、PB、AB,若B(﹣4,0),且2∠APB=90°+∠PAC,求点A的坐标;
(3)如图2,过点P作PD⊥PB交y轴正半轴于点D,点M为BD的中点,点N(﹣1,0),则MN的最小值为 (请直接写出结果).
23、已知⊙O的直径AB=6,点C是⊙O上一个动点,D是弦AC的中点,连接BD.
(1)如图1,过点C作⊙O的切线交直径AB的延长线于点E,且tanE=;
①BE= ;
②求证:∠CDB=45°;
(2)如图2,F是弧AB的中点,且C、F分别位于直径AB的两侧,连接DF、BF.在点C运动过程中,当△BDF是等腰三角形时,求AC的长.
24、如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.
(1)求证:CE是⊙O的切线.
(2)已知BD=3,CD=5,求O,E两点之间的距离.
邮箱: 联系方式: