1、下列四个数中,最小的数是( )
A.
B.2
C.
D.4
2、如图,已知,第一象限内的点在反比例函数
的图象上,第四象限内的点
在反比例函数
的图象上.且
,
,则
的值为( )
A. B. 6 C.
D. -6
3、小淇将(2021x+2022)2展开后得到a1x2+b1x+c1,小尧将(2022x﹣2021)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为( )
A.2021
B.2022
C.4043
D.1
4、一组数据1,3,4,4,4,5,5,6的众数和中位数是( )
A.4,4 B.4,5 C.5,4 D.5,3
5、一家商店将某种服装按成本价每件a元提高50%标价,又以8折优惠卖出,则这种服装每件的售价是( )
A. 0.8a元 B. 0.4a元 C. 1.2a元 D. 1.5a元
6、下列天气预报的图标中既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
7、二次函数y=3(x+4)2﹣5的图象的顶点坐标为( )
A.(4,5)
B.(﹣4,5)
C.(4,﹣5)
D.(﹣4,﹣5)
8、在平面直角坐标系中,下列函数的图象不过点
的是( )
A.
B.
C.
D.
9、如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于( )
A.6
B.8
C.14
D.28
10、若一元二次方程的两个根分别为
,则
的值为( )
A.-4
B.-2
C.0
D.1
11、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________.
12、计算:________.
13、在一条笔直的公路上有A、B两地,甲、乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后,乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇。甲车出发的时间记为t (小时),两车之间的距离记为y(千米),y与t的函数关系如图所示,则乙车第二次与甲车相遇时,甲车距离A地___千米.
14、一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是_______.
15、若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个根, 则x1+x2 =-,x1x2 =
;已知m、n是方程x2+2x-1=0 的两个根,则m2n+mn2=________.
16、如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H,则线段FH的长为_______.
17、随着网购的日益盛行,物流行业已逐渐成为运输业的主力,已知某大型物流公司有A、B两种型号的货车,A型货车的满载量是B型货车满载量的2倍多4吨,在两车满载的情况下,用A型货车载1400吨货物与用B型货车载560吨货物的用车数量相同.
(1)1辆A型货车和1辆B型货车的满载量分别是多少?
(2)该物流公司现有120吨货物,可以选择上述两种货车运送,在满载的情况下,有几种方案可以一次性运完?
18、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,
≈1.73)
19、已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与
的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且
的最大值为-1,求m,n的值.
20、【探究发现】
(1)如图①所示,在等腰直角中,点D,O分别为边
,
上一点,且
,延长
交射线
于点E,则有下列命题:
①;
②;
③;
请你从中选择一个命题证明其真假,并写出证明过程;
【类比迁移】
(2)如图②所示,在等腰中,
,
,点D,O分别为边
,
上一点,且
,延长
交射线
于点E,若
,求
的值;
【拓展应用】
(3)在等腰中,
,
,
,点D,O分别为射线
,
上一点,且
,延长
交射线
于点E,当
为等腰三角形时,请直接写出
的长(用a,b表示).
21、小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.
(1)求大本作业本与小本作业本每本各多少元?
(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?
22、如图,抛物线经过原点,并且与
轴交于点
,抛物线上有一点B,且
的面积等于3,求点B的坐标.
23、计算
(1) 22 |-2|-2cos45º 3 0
(2)先化简,再求值: (1 )
,其中a
-1
(3)-
+
24、已知,求代数式
的值.
邮箱: 联系方式: