1、如果圆锥的母线长为 10cm,高为 8cm,那么它的侧面积等于( )cm²
A.80π
B.60π
C.40π
D.30π
2、如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴.若S△BOP=3.6,则S△ABP=( )
A.3.6
B.4.8
C.5.4
D.6
3、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺竿长y尺,则符合题意的方程组是( )
A.
B.
C.
D.
4、如图,在的正方形网格中,能画出与“格点
”面积相等的“格点正方形”有( )个.
A.2 B.4 C.6 D.8
5、若代数式在实数范围内有意义,则
的取值范围是( )
A. B.
C.
D.
6、如图,如果数轴上,
两点之间的距离是
,且点
在原点左侧,那么点
表示的数是( )
A.
B.
C.
D.
7、如图,△ABC中,下面说法正确的个数是( )个.
①若O是△ABC的外心,∠A=50°,则∠BOC=100°;
②若O是△ABC的内心,∠A=50°,则∠BOC=115°;
③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;
④△ABC的面积是12,周长是16,则其内切圆的半径是1.
A. 1 B. 2 C. 3 D. 4
8、相同时刻太阳光下,若高为1.5 m的测杆的影长为3 m,则影长为30 m的旗杆的高是( )
A. 15 m
B. 16 m
C. 18 m
D. 20 m
9、若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是( )
A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1
10、下列计算正确的是 ( )
A. 3a+2a=5a2 B. (a+2)(a-2)=a2-4
C. (a+1)2=a2+1 D. 6a6÷3a2=2a3
11、如图,m∥n,∠1=110°,∠2=100°,则∠3=____°.
12、如图,在△ABC中,AB=AC,以BC为斜边作等腰直角三角形BCD,E是△BCD内一点,连接BE和EC,BE=AB,∠BEC+∠BAC=180°.若EC=1,tan∠ABC=
,则线段BD的长是_____.
13、如图在正方形ABCD中,点M为BC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EF交BC于点N,连CF,若BE=2,S△CMF=3,则MN=_____.
14、不等式 的最小整数解是_________.
15、现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______.
16、分解因式:________
17、计算:
(1)
(2)
18、已知点A(2,6)、B(3,4)在某个反比例函数的图象上.
(1)求此反比例函数的解析式;
(2)若直线与线段
相交,求m的取值范围.
19、阅读以下材料,并按要求完成相应的任务.
定义:自一点引出的两条射线分别经过已知线段的两端,则这两条射线所成的角称为该点对已知线段的视角.如图(1),是点P对线段AB的视角.
问题:已知在足球比赛中,足球对球门的视角越大,球越容易被踢进,如图(2),EF是球门,球员沿直线l带球前进,那么他应当在哪个地方射门,才能使进球的可能性最大?
爱好足球运动的小明进行了深入的思考与探究,解答如下:
解:过点E,F作⊙O,使其与直线l相切,切点为P.在直线l上任取一点Q(异于点P),连接EO交⊙O于点H,连接FQ,FH,
则.(依据1)
∵,(依据2)
∴,
∴.
故当球员在点P处射门时,进球的可能性最大.
任务:
(1)上面的证明过程中“依据1”和“依据2”分别是指:
依据1:______________________________
依据2:______________________________
(2)如图(3),已知足球球门宽EF为米,一名球员从距F点
米的L点(点L在直线EF上)出发,沿LR方向带球前进(
).求当球员到达最佳射门点P时,他前进的距离.
(提示:可仿照小明的方法,过点E、F作⊙O,⊙O与直线LR相切于点P,连接PO并延长交⊙O于点W,……)
20、如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF
探究与猜想:若∠BAE=36°,求∠B的度数.
21、甲、乙两班举行电脑汉字输入速度比赛,各选10名学生参加, 各班参赛学生每分钟输入汉字个数统计如下表:
输入汉字 (个) | 132 | 133 | 134 | 135 | 136 | 137 | 众数 | 中位数 | 平均数 (x) | 方差 (S2) |
甲班学生 (人) | 1 | 0 | 1 | 5 | 2 | 1 | 135 | 135 | 135 | 1.6 |
乙班学生 (人) | 0 | 1 | 4 | 1 | 2 | 2 |
|
|
|
|
请填写上表中乙班学生的相关数据,再根据所学的统计学知识,从不同方面评价甲、乙两班学生的比赛成绩.(至少从两个方面进行评价)
22、化简,求值(1- )÷
,其中x是不等式组
的整数解.
23、我市为创建“国家级森林城市”,政府决定对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:
设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:
(1) 设y与x之间的函数关系式,并写出自变量x的取值范围;
(2) 承包商要获得不低于中标价16%的利润,应如何选购树苗?
(3) 政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补栽;若成货率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?
24、已知抛物线y=ax2+bx﹣a+b(a,b为常数,且α≠0).
(1)当a=﹣1,b=1时,求顶点坐标;
(2)求证:无论a,b取任意实数,此抛物线必经过一个定点,并求出此定点;
(3)若a<0,当抛物线的顶点在最低位置时:
①求a与b满足的关系式;
②抛物线上有两点(2,s),(m,t),当s<t时,求m的取值范围.
邮箱: 联系方式: