1、如图所示,在中,
以
的中点
为圆心,作半圆与
相切,点
分别是半圆和边
上的动点,连接
则
的最大值与最小值的和是( )
A. B.
C.
D.
2、若分式方程2+=
有增根,则k的值为( )
A.﹣2
B.﹣1
C.1
D.2
3、 等于( )
A.3
B.﹣3
C.
D.±3
4、下列计算正确的是( )
A. B.
C.
D.
5、某物体三视图如图16,则该物体形状可能是( )
A. 长方体 B. 圆锥体 C. 正方体 D. 圆柱体
6、在△ABC中,三条边的长分别为2、3、4,△A′B′C′的两边长分别为1、1.5,要使△ABC∽△A′B′C′,那么△A′B′C′的第三边长应该是( )
A. 2 B. C. 4 D. 2
7、如图,一只蚂蚁要从圆柱体下底面的点,沿圆柱表面爬到与
相对的上底面的
点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为( )
A. B.
C.
D.
8、如图,在平行四边形中,
,
为
上一点,
为
的中点,则下列结论中正确的是( )
A.
B.
C.
D.
9、从一个果园里随机挑选10棵杏树,称得这些杏树的产量分别为(单位:kg):10,15,8,9,12,14,9,10,12,10,若该果园里杏树有100棵,则大约可产杏( )
A. 1 090 kg B. 1 100 kg C. 1 280 kg D. 1 300 kg
10、如图,△ABC中,AC=BC,点P为AB上的动点(不与A,B重合)过P作PE⊥AC于E,PF⊥BC于F设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是( )
A. B.
C. D.
11、若有意义,则
的取值范围是______.
12、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B 的坐标为(8,4),反比例函数y=(k>0)的图象分别交边BC、AB 于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是________.
13、反比例函数y=的图象经过点(2,3),则k=___________.
14、一块矩形田地的面积为864平方步,只知道它的长与宽共60步,则它的长比宽多_____步.
15、一批零件200个,一个工人每小时做10个,用关系式表示人数y(个)与完成任务所需的时间x(小时)之间的函数关系式为_______.
16、有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .
17、某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.
(1)求A,B两种电话机的单价各是多少?
(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?
18、某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有______名;
(2)补全条形统计图,并计算阅读部分圆心角是______度;
(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?
19、计算:
(1).
(2)
20、判断下面抽样调查选取样本的方法是否合适,若不合适,请说明理由.
(1)为调查江苏省的环境污染情况,调查了长江以南的南京市、常州市、苏州市、镇江市、无锡市的环境污染情况;
(2)从100名学生中随机抽取2名学生,测量他们的身高来估算这100名学生的平均身高;
(3)从一批灯泡中随机抽取50个进行试验,估算这批灯泡的使用寿命;
(4)为了解观众对中央电视台第一套节目的满意程度,对所有上网的家庭进行在线调查.
21、如图,是
是直径,点
在
上,
,垂足为
,
交
于
,过点
作
的切线
交
的延长线于点
.
(1)求证:;
(2)若,求
的半径。
22、计算
23、某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.
(1)运动服的进价是每件______元;
(2)促销期间,每天若要获得500元的利润,则x的值为多少?
24、如图,在平面直角坐标系xOy中,已知Rt△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,将△ABC沿AC翻折得△ADC,点A和点D都在反比例函数y=
的图象上,则k的值是_____.
邮箱: 联系方式: