1、若a+b=5,则代数式(﹣a)÷(
)的值为( )
A.5
B.﹣5
C.﹣
D.
2、如图,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有( )
A. 6对 B. 5对 C. 4对 D. 3对
3、下列二次根式中,是最简二次根式的是( )
A. B.
C.
D.
4、平行四边形、矩形、菱形、正方形都具有的性质是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.对角线互相垂直平分且相等
5、将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是( )
A. B.
C.
D.
6、下列命题中,为真命题的是【 】
A.对顶角相等
B.同位角相等
C.若,则
D.若,则
7、观察下列图形,其中既是轴对称又是中心对称图形的是( )
A. B.
C.
D.
8、一组数据:则这组数据的中位数和众数分别是( )
A.
B.
C.
D.
9、某工厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为( )
A.
B.
C.
D.
10、如图,ΔABC≌ΔABC,点B在AB边上,线段AB,AC交于点D.若∠A=40°,∠B=60°,则∠ACB的度数为( )
A.100°
B.120°
C.135°
D.140°
11、如图,△ABC的周长为16,D, E,F分别为AB, BC,AC的中点,M,N,P分别为DE, EF,DF的中点,则△MNP的周长为____;如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___.
12、计算:______.
13、甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).
14、如图,在△ABC中,点D、E分别是边AB、AC上的点,DE垂直平分AB,∠C=90°,∠BAC=15°.若BC=3cm,则AE的长度为_____.
15、如图,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,于点F,G为EF的中点,连接DG,则DG的长为_________.
16、如图所示,为
的中位线,点
在
上,且
,若
,
,则
的长为__________.
17、已知,
,则
__________,
__________.
18、化简:=_____.
19、若二次根式在实数范围内有意义,则x的取值范围是_____.
20、如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=6,则四边形AEDF的周长为_____.
21、先因式分解,再求值:(2x-3y)2-(2x+3y)2,其中x=,y=
.
22、先化简,再求值:,其中
.
23、某校八年级根据学生的学习成绩、学习能力将学生依次分为A、B、C三个层次,第一次月考后,选取了其中一个A层次班级的考试成绩分布情况进行处理分析,制成频数分布表(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 39.5﹣49.5 | 2 | 0.05 |
2 | 49.5﹣59.5 | 4 | 0.10 |
3 | 59.5~69.5 | a | 0.20 |
4 | 69.5~79.5 | 10 | 0.25 |
5 | 79.5﹣89.5 | b | c |
6 | 89.5﹣100 | 6 | 0.15 |
合计 |
| 40 | 1.00 |
根据表中提供的信息解答下列各题:
(1)频数分布表中的a= ,b= ,c= ;
(2)将频数分布直方图补充完整;
(3)小明正好在所选取的班级中,他认为:学校八年级共有20个班(平均每班40人),根据本班的成绩分布情况可知,在这次考试中,全年级90分以上为优秀,则优秀的人数约为 人,60分及以上为及格,及格的人数约为 人,及格的百分比约为 ;
(4)小明得到的数据会与实际情况相符吗?为什么?
24、如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
25、某零件制造厂有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件的成本为400元,可获利150元,每制造一个乙种零件的成本为500元,可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)写出次厂家每天获利y(元)与x(元)之间的函数关系式;
(2)若该厂家每天最多能投入的成本为49000元,那么该厂家每天最多能获利多少元?
邮箱: 联系方式: