1、抛物线y=x2+bx+3的对称轴为直线x=
1.若关于x的一元二次方程
x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是( )
A.12<t≤3
B.12<t<4
C.12<t≤4
D.12<t<3
2、下列图形中,是中心对称图形的是( )
3、如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )
A.30
B.20
C.60
D.40
4、有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )
A. 150米 B. 200米 C. 300米 D. 400米
5、9的算术平方根是( )
A.3
B.-3
C.
D.±
6、如图所示的尺规作图的痕迹表示的是( )
A.尺规作线段的垂直平分线
B.尺规作一条线段等于已知线段
C.尺规作一个角等于已知角
D.尺规作角的平分线
7、如图,在平面直角坐标系中,⊙A与x轴相切与点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图像上,若△OAB的面积为3,则k的值为
A. 3. B. 6. C. 9. D. 12
8、如图,P是半径为5的⊙O内一点,且OP=3,在过点P的所有⊙O的弦中,弦长为整数的弦的条数为( ).
A.2 B.3 C.4 D.5
9、2020年新冠病毒湖北疫情累计趋势如图所示,2月10到2月12日累计确诊日平均增长率约为( )
A.10%
B.20%
C.30%
D.40%
10、平面直角坐标系中,已知点,连接点
与坐标原点
,将线段
绕点
顺时针旋转
,则点
的对应点
的坐标为( )
A. B.
C.
D.
11、如图,在△ABC中,∠C=50°,圆O是△ABC的外接圆,AE为圆O的直径,AE与BC相交于点D,若AB=AD.则∠EAC=_______.
12、习总书记提出“一带一路”的伟大构想以后,上海仅2015年12月对“一带一路”沿线国家和地区的投资就达到了92亿美元,其中92亿美元用科学记数法表示为_____美元.
13、某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:
时间(单位:小时) | 4 | 3 | 2 | 1 | 0 |
人数 | 2 | 4 | 2 | 1 | 1 |
则这10名学生周末利用网络进行学习的平均时间是_____小时.
14、规定:(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:
=n.
=
(a>0,a≠1,N>0,N≠1,M>0).例如:
=3,
=
,则
=___.
15、如图,将绕点
逆时针旋转
,得到
,这时点
恰好在同一直线上,则
的度数为______.
16、两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长为________.
17、图1是一辆吊车的实物图,图2是其工作示意图,是可以伸缩的起重臂,其转动点
离地面
的高度
为
.当起重臂
长度为
,张角
为118°.
(1)求操作平台离地面的高度;
(2)当张角为120°,其它条件不变时,求操作平台
升高的高度.
(最后结果精确到0.1,参考数据:,
,
,
)
18、某草莓生产基地在气温较低时,用装有恒温系统的大棚栽培一种新草莓.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度与时间
之间的函数关系,其中线段
,
表示恒温系统开启阶段,线段
表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天大棚内的温度与时间
(
) 之间的函数关系式;
(2)求恒温系统设定的恒定温度是多少度?
(3)若大棚内的温度低于15℃时,草莓会受到伤害.问在这天内恒温系统最多可以关闭多长时间就必须重新启动,才能避免草莓受到伤害.
19、已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示
(1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)
(2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.
20、随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车.我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
(1)求该品牌新能源汽车销售量的月均增长率;
(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
21、解分式方程:+3=
.
22、分解因式:.
23、新学期开始,为降低校园疫情传播风险,更加精准做好防控工作,避免发生聚集性疫情,学校举行了“学习防护知识,预防新型冠状病毒肺炎”活动.为了解全校1200名学生此次学习情况,随机抽取了三个年级部分学生参加竞赛,对参赛学生的成绩(百分制)整理并绘制出如下不完整的统计表和扇形统计图.
知识竞赛成绩统计表
组别 | 甲组 | 乙组 | 丙组 |
分数 | |||
频数 | m | 15 | 36 |
扇形统计图
根据上述信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为___________,表中m的值为___________;
(2)所抽取的参赛学生的成绩的中位数在___________组;
(3)若本次竞赛成绩达到80分算合格,请你估计学校竞赛成绩合格的学生有多少人?
24、为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:
射击次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成绩(环) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | a | 10 | 8 |
乙的成绩(环) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
(1)经计算甲和乙的平均成绩是8(环),请求出表中的a= ;
(2)甲成绩的中位数是 环,乙成绩的众数是 环;
(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?
邮箱: 联系方式: