1、下列图形中,既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
2、如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=( )
A. -1.6 B. 3.2 C. 4.4 D. 以上都不对
3、如图,分别以正三角形的三个顶点为圆心,正三角形的边长为半径画弧形成一个弧线封闭图形,将这个封闭图形称为“凸轮”.若正三角形的边长为2,则“凸轮”的周长等于( )
A.
B.
C.
D.
4、数学老师对小明参加中考前的5次模拟考试进行统计分析,判断小明的数学成绩是否稳定,老师需要知道小明这5次数学成绩的( )
A.平均数或中位数
B.众数或频率
C.方差或极差
D.频数或众数
5、为满足人民对美好生活的向往,造福子孙后代,环保部门要求相关企业加强污水治理能力,污水排放未达标的企业要限期整改.甲、乙两个企业的污水排放量W与时间t的关系如图所示,我们用表示t时刻某企业的污水排放量,用
的大小评价在
至
这段时间内某企业污水治理能力的强弱.已知甲、乙两企业在整改期间排放的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在这段时间内,甲企业的污水治理能力比乙企业强;
②在时刻,乙企业的污水排放量高;
③在时刻,甲、乙两企业的污水排放量都已达标;
④在,
,
这三段时间中,甲企业在
的污水治理能力最强.
其中所有正确结论的序号是( )
A.①②③
B.①③④
C.②④
D.①③
6、计算的结果是( )
A.3
B.0
C.
D.
7、如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣
x上,则点B的对应点B′的坐标为( )
A.(﹣8,6)
B.(﹣,5)
C.(﹣,5)
D.(﹣8,5)
8、如图①,②,③,④,两次折叠等腰三角形纸片ABC,先使AB与AC重合,折痕为AD,展平纸片:再使点A与点C重合,折痕为EF,展平纸片,AD、EF交于点G.若,
,则DG的长为( )
A.
B.
C.1cm
D.
9、在平面直角坐标系中,将抛物线y=x2-4向上平移2个单位长度,得到的抛物线表达式为( )
A. y=(x+2)2 B. y=x2+2
C. y=(x-2)2 D. y=x2-2
10、在平面直角坐标系中,已知m≠n,函数y=x2+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx2+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是( )
A.a=b B.a=b﹣1 C.a=b或a=b+1 D.a=b或a=b﹣1
11、已知一个扇形的面积是,圆心角为
,则此扇形的半径为__________.
12、菱形中,
,其周长为
,则菱形的面积为____
.
13、如图,正方形网格中,每个正方形边长都相等,A、O、B在如图的格点上,则_____.
14、如图,已知,
,
,
,则
________.
15、如图,在中,
,点
为
上任意一点,连接
,以
为邻边作平行四边形
,连接
,则
的最小值为_______.
16、如图,点E是正方形边
上的一点,已知
,
分别交边
,
于点G,F,且满足
,则
的长为______.
17、(1)解方程:
(2)解不等式组:
18、如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果,
求m与n满足的关系式(用含n的代数式表示m).
19、综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4
,5
的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
20、如图,点在反比例函数
的图象上,
轴于点M,点B是反比例函数
的图象上一动点,过点
作
轴于点N.
(1)求反比例函数的解析式.
(2)连接MN,BM.小华说:“当时,
随着
的增大而减小.”你同意小华的说法吗?请说明理由.
21、如图,抛物线(
<0)与
轴交于A,B两点,与y轴正半轴交于点C,且∠ACB=90°,点P是直线BC上方抛物线上的一个动点.
(1)请直接写出A,B,C三点的坐标及抛物线的解析式;
(2)连接PB,以BP,BC为一组邻边作平行四边形BCDP,当平行四边形BCDP的面积最大时,求P,D两点的坐标;
(3)若点Q是x 轴上一动点,是否存在以P,C,Q为顶点的三角形为等腰直角三角形?若存在,请直接写出P,Q两点的坐标;若不存在,请说明理由.
22、如图,在△ABC中,AC=BC,BD⊥AC于点D,在△ABC外作∠CAE=∠CBD,过点C作CE⊥AE于点E.如果∠BCE =,求∠BAC的度数.
23、如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,.
(1)判断BC、MD的位置关系,并说明理由;
(2)若AE=16,BE=4,求线段CD的长.
24、为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.
(1)求甲、乙两种品牌每件的进价分别是多少元?
(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.
邮箱: 联系方式: