1、下列运算正确的是( )
A. B.
C.
D.
2、在平面直角坐标系中,把点绕原点O顺时针旋转
,所得到的对应点
的坐标为( )
A.
B.
C.
D.
3、计算:( )
A.
B.-5
C.5
D.
4、如图,已知,将直角三角形如图放置,若∠2=40°,则∠1为( )
A.120° B.130° C.140° D.150°
5、关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为
”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在
附近,正确的说法是( )
A.②④
B.②③
C.①④
D.①③
6、不等式组的解集是( )
A. B.
或
C.
D.
7、股票每天的涨、跌幅均不能超过,即当涨了原价的
后,便不能再涨,叫做涨停;当跌了原价的
后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为
,则
满足的方程是( )
A. B.
C. D.
8、实数,
在数轴上的对应点如图所示,化简
结果为( )
A.
B.
C.
D.
9、如图,王华晚上由路灯A下的B处走到C处时,测得影子的长为1m,继续往前走3m到达E处时,测得影子
的长为2m,已知王华的身高是1.5m,那么路灯A的高度
等于( )
A.4.5m
B.6m
C.7.5m
D.8m
10、计算的结果是 ( )
A.-
B.
-5
C.3
-
D.
-
11、重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.
12、关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是_____________________
13、在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,
①存在无数个四边形MNPQ是平行四边形;
②存在无数个四边形MNPQ是矩形;
③存在无数个四边形MNPQ是菱形;
④至少存在一个四边形MNPQ是正方形.
所有正确结论的序号是______.
14、如图1,△ABC是一张等腰直角三角形彩色纸,AC=BC,将斜边上的高CD五等分,然后裁出4张宽度相等的长方形纸条.若用这4张纸条刚好可以为一幅正方形美术作品镶边(纸条不重叠),如图2,则正方形美术作品与镶边后的作品的面积之比为_____.
15、在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为 元.
16、①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:__________.
17、(1)计算:;
(2)解不等式:3x﹣5≤2(x+2)
18、如图1,四边形ABCD内接于圆O,AC是圆O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP.
(1)求证:∠BAC=2∠ACD.
(2)过图1中的点D作DE⊥AC于E,交BC于G(如图2),BG:GE=3:5,OE=5,求⊙O的半径.
19、(1)请画出△ABC关于直线l的轴对称图形△A1B1C1.
(2)将△ABC绕着点B旋转180°得到△A2B2C2,并画出图形.(保留作图痕迹,不写画法,注明结论)
20、某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:
售价x(元/件) | 30 | 40 | 60 |
周销售量y(件) | 90 | 70 | 30 |
周销售利润w(元) | 450 | 1050 | 1050 |
注:周销售利润=周销售量×(售价﹣进价)
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)当售价定为多少时,周销售利润最大,最大利润是多少?
(3)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过45元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1080元,求m的值.
21、计算:
22、在平面直角坐标系中,对于点A和图形M,若图形M上存在两点P,Q,使得
,则称点A是图形M的“倍增点”.
(1)若图形M为线段,其中点
,点
,则下列三个点
,
,
是线段
的倍增点的是_____________;
(2)若的半径为4,直线l:
,求直线l上
倍增点的横坐标的取值范围;
(3)设直线与两坐标轴分别交于G,H,OT的半径为4,圆心T是x轴上的动点,若线段GH上存在
的倍增点,直接写出圆心T的横坐标的取值范围.
23、一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为.
⑴ 布袋里红球有多少个?
⑵ 先从布袋中摸出1个球后不再放回,再摸出1个球,求两次摸到的球都是白球的概率.
24、如图1,在平面直角坐标系中,已知△ABC中,∠ABC=90°,B(4,0),C(8,0),tan∠ACB=2,抛物线y=ax2+bx经过A,C两点.
(1)求点A的坐标及抛物线的解析式;
(2)如图2,过点A作AD⊥AB交BC的垂线于点D,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?
②连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?
邮箱: 联系方式: