1、下列数学符号中,不是中心对称图形的是( )
A.∽
B.//
C.>
D.=
2、在半径为的圆中,长度等于
的弦所对的弧的度数为( )
A. B.
C.
D.
或
3、某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所占的百分比为10%,则“步行”部分所对应的圆心角的度数是( ).
A. 120° B. 136° C. 140° D. 144°
4、如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )
A. B.
C.
D.
5、王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为,如果他将转盘等分成12份,则红色区域应占的份数是( )
A.3份
B.4份
C.6份
D.9份
6、下列各数中,相反数等于本身的数是( )
A. –1 B. 0 C. 1 D. 2
7、如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为( )
A.
B.
C.6
D.
8、如图,在一张圆形纸片上剪下一个面积最大的正六边形纸片ABCDEF,它的边长是24cm, 的长度是( )
A. 6πcm B. 8πcm C. 36πcm D. 96πcm
9、函数自变量x的取值范围是【 】
A.x≥1且x≠3
B.x≥1
C.x≠3
D.x>1且x≠3
10、定义:,若函数
,则该函数的最大值为( )
A.0
B.3
C.5
D.8
11、直线的截距是____.
12、如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数的图象经过该菱形对角线的交点A,且与边BC交于点F,若点D的坐标为
,则反比例函数的解析式为__________.
13、关于的分式方程
的解为正数,则
的取值范围为___________
14、如图,四边形ABCD为平行四边形,∠A=45,,点E为AD边上一动点.将△ABE沿直线BE折叠,点A的对应点为A′,再将△BEA′沿直线A′B折叠,点E的对应点为E′.当点E′在BC上方,且BE′与平行四边形ABCD的一边垂直时,A′E′的长为______.
15、将二次函数的图象向右平移3个单位得到一个新函数的图象,请写出一个自变量x的取值范围,使得在所写的取值范围内,上述两个函数中,恰好其中一个函数的图象从左往右上升,而另一个函数的图象从左往右下降,写出的x的取值范围是__________.
16、不等式组的解集为_____________.
17、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么请你画出该几何体的主视图和左视图.
18、某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量( | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 ,
;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
19、如图所示,在△ABD中,BC为AD边上的高线,tan∠BAD=1,在BC上截取CG=CD,连结AG,将△ACG绕点C旋转,使点G落在BD边上的F处,A落在E处,连结BE,若AD=4,tanD=3,则△CFD和△ECF的面积比为___;BE长为____.
20、如图,在直角坐标系内,已知A(2,3),B(4,1),直线l过P(m,0),A、B关于l的对称点分别为A’、B’,请利用直尺(无刻度)和圆规按下列要求作图.
(1)当A’与B重合时,请在图1中画出点P位置,并求出m的值;
(2)当A’、B’都落在y轴上时,请在图2中画出直线l,并求出m的值.
21、三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.
已知△ABC中,AB=,∠B=45°,BC=1+
,解△ABC.
22、 如图1,以△ABC的边AB为直径作⊙O,交AC于点E,BD平分∠ABE交AC于F,交圆O于点D,且∠BDE=∠CBE.
(1)求证:BC是⊙O的切线;
(2)如图2,延长ED交直线AB于点P,若 PA=AO,DE=2,求的值及AO的长.
23、解方程:.
24、在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.
(1)连接AE,当△APE与△ADE全等时,求BP的长;
(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?
(3)若PE∥BD,试求出此时BP的长.
邮箱: 联系方式: