1、计算-6sin30°的相反数等于
A. 3 B. C.
D.
2、据统计,2018年安徽省属企业实现营业收入总额8339.4亿元,同比增长12.4%。这里“8339.4亿”用科学记数法表示为( )
A. B.
C.
D.
3、据发改委公布的数据显示,截至到2月29日,我国口罩日产量已经达到了116000000只,数据116000000用科学记数法表示为( )
A.11.6×107
B.1.16×108
C.116×106
D.0.116×109
4、下列运算正确的是( )
A.a5a3 = a8 B.3690000=3.69×107 C.(-2a)3 =-6a3 D.
5、下列图形中既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D.
6、如图1,Rt△ABC中,BC=2,AC=4,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,已知y与x之间的函数关系如图2所示,则a的值是( )
A.
B.1
C.
D.
7、如图中几何体的主视图是( )
A. B.
C.
D.
8、图中三视图对应的正三棱柱是( )
A.
B.
C.
D.
9、如图,已知a∥b,含30°角的直角三角板的顶点在直线b上,若∠1=24°,则∠2等于( )
A.110°
B.112°
C.114°
D.120°
10、如图,A、B、C三点在⊙O上,连接ABCO,若∠AOC=140°,则∠B的度数为( )
A.140° B.120° C.110° D.130°
11、观察规律,
,
,…,运用你观察到的规律解决以下问题:如图,分别过点
(
1、2、
)作x轴的垂线,交
的图象于点
,交直线
于点
.则
的值为______.
12、如图,直线与双曲线
交于点A,B,C为x轴正半轴上一点,且
,P为半径为1的
上一点,E为
的中点.若
的最小值为2,则此时k的值为______.
13、已知是关于
的一元二次方程
的两实根,且
,则
的值是____.
14、为了解某市常住人口的变化情况,收集并整理了2011年至2020年的常住人口(单位:万人)数据,绘制统计图如下:根据统计图,写出一条有关该市常住人口变化情况的信息:__________.
15、已知x﹣=4,则x2﹣4x+5的值为__.
16、如图,用8个全等的Rt△ABC (AC >BC) 分别拼成如图1和图2中的两个正方形,中间的两个小正方形的面积分别记为 和
,且
, 则tanA=________.
17、(1)问题发现
如图1,是等边三角形,点
,
分别在边
,
上.若
,则
,
,
,
之间的数量关系是 ;
(2)拓展探究
如图2,是等腰三角形,
,
,点
,
分别在边
,
上.若
,则(1)中的结论是否仍然成立?请说明理由.
(3)解决问题
如图3,在中,
,
,点
从点
出发,以
的速度沿
方向匀速运动,同时点
从点
出发,以
的速度沿
方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动.连接
,在
右侧作
,该角的另一边交射线
于点
,连接
.设运动时间为
,当
为等腰三角形时,直接写出
的值.
18、某校九年级举行了一次中考体育模拟测试,测试成绩总分40分,共分三个等级:40分~35分为A等,30分~34分为B等,30分以下为C等.从所有参加测试的学生中随机的抽取20名学生的成绩,制作出如下条形统计图,请解答下列问题:
(1)下列抽取20名学生的方法最合理的一种是 .(只需填上正确的序号)
①抽取某班男、女各10名;②随机的抽取20名女生;③从参加测试的学生中随机抽取20名.
(2)请补全条形统计图;
(3)若该校共有604名学生参加测试,请你用此样本估计测试中A等和B等的学生人数之和.
19、先化简,再求值:(2﹣a)(3+a)+(a﹣5)2,其中a=4.
20、如图所示,抛物线y=ax2+bx+c与x轴交于A、B两点,A(﹣5,0),与y轴交于C(0,﹣5),并且对称轴x=﹣3.
(1)求抛物线的解析式;
(2)P在x轴上方的抛物线上,过P的直线y=x+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;
(3)点D为抛物线对称轴上一点,
①当△ACD是以AC为直角边的直角三角形时,求D点坐标;
②若△ACD是锐角三角形,求点D的纵坐标的取值范围.
21、如图,点O在边长为8的正方形ABCD的AD边上运动(4<C)A<8),以O为圆心,OA长为半径作圆,交CD于点E,连接OE、AE,过点E作直线EF交BC于 点F,且∠CEF=2∠DAE.
(1)求证:直线EF为⊙O的切线;
(2)在点O的运动过程中,设DE=x,解决下列问题:
①求OD·CF的最大值,并求此时半径的长;
②试猜想并证明△CEF的周长为定值.
22、某市居民用水实行以户为单位的三级阶梯收费办法:
第一级:居民每户每月用水吨以内含
吨,每吨收水费
元;
第二级:居民每户每月用水超过吨但不超过
吨,未超过
的部分按照第一级标准收费,超过部分每吨收水费
元;
第三级:居民每户每月用水超过吨,未超过
吨的部分按照第一、二级标准收费,超过部分每吨收水费
元;
设一户居民月用水吨,应缴水费
元,
与
之间的函数关系如图所示,
(Ⅰ)根据图象直接作答:___________,
_______________,
_______________;
(Ⅱ)求当时,
与
之间的函数关系式;
(Ⅲ)把上述水费阶梯收费办法称为方案①,假设还存在方案②;居民每户月用水一律按照每吨元的标准缴费.当居民用户月用水超过
吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.
23、若一次函数ymxn与反比例函数y同时经过点P(x,y)则称二次函数ymx2nxk为一次函数与反比例函数的“共享函数”,称点P为共享点.
(1)判断y2x1与y是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;
(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y存在“共享函数”y=(m+t)x2+(10m−t)x−2020,求m的值.
(3)若一次函数yxm和反比例函数y在自变量x的值满足mxm6的情况下,其“共享函数”的最小值为3,求其“共享函数”的解析式.
24、在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点D,E分别在线段OB和线段AB上,连接DE,点B关于DE的对称点F落在线段OA上,连接DF,EF,点C是线段AB中点.
(1)如图①,当点D与原点重合时,点E的坐标是 ;
(2)如图②,当EF∥OB时,
①求证:四边形BEFD是菱形;
②连接OC,交EF于点G,连接DG,求证:DG⊥EF.
(3)如图③,当EF与OB不平行时,是否还有DG⊥EF?请作出判断并说明理由.
邮箱: 联系方式: