1、下列各选项中的两个图形是相似图形的是( )
A.
B.
C.
D.
2、将直线向左平移
个单位长度得到直线
,则直线
的解析式为( )
A. B.
C.
D.
3、在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B.
C.
D. 3
4、如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )
A.(﹣a,﹣b) B.(﹣a,﹣b﹣1) C.(﹣a,﹣b+1) D.(﹣a,﹣b+2)
5、下列说法错误的是( )
A. 直径是圆中最长的弦 B. 长度相等的两条弧是等弧
C. 面积相等的两个圆是等圆 D. 能完全重合的两条弧是等弧
6、小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的中位数和方差分别为( )
A.90,66
B.90,13.2
C.89,66
D.89,13.2
7、已知直线L的方程式为x=3,直线M的方程式为y=﹣2,判断下列何者为直线L、直线M画在坐标平面上的图形?( )
A.
B.
C.
D.
8、如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B.
C.
D.
9、下列运算正确的是( )
A.a2+a3=a5
B.(﹣2a2)3=﹣2a5
C.a2•a3=a6
D.a6÷a2=a4
10、计算的结果是( )
A.
B.
C.
D.
11、计算=___________
12、如图,直线,直线
与直线
,
都相交.若
,则
_______.
13、抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是_____.
14、某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.
a.该质量指标值对应的产品等级如下:
说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.
b.甲企业样本数据的频数分布统计表如下(不完整):
c.乙企业样本数据的频数分布直方图如下:
d.两企业样本数据的平均数、中位数、众数、极差、方差如下:
根据以上信息,回答下列问题:
(1)的值为__________,
的值为______________;
(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为_____________;
若乙企业生产的某批产品共5万件,估计质量优秀的有_____________万件;
(3)根据图表数据,你认为___________企业生产的产品质量较好,理由为:__________________.(至少从两个角度说明推断的合理性)
15、下表记录了一名篮球运动员在罚球线上投篮的结果:
投篮次数n | 48 | 82 | 124 | 176 | 230 | 287 | 328 |
投中次数m | 33 | 59 | 83 | 118 | 159 | 195 | 223 |
投中频率 | 0.69 | 0.72 | 0.67 | 0.67 | 0.69 | 0.68 | 0.68 |
根据上表,这名篮球运动员投篮一次,投中的概率约为________.
16、给定一列按规律排列的数:,1,
,
,…,根据前4个数的规律,第2020个数是_____.
17、如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)
18、请阅读下列材料,并完成相应的任务.
三等分任意角问题是数学史上一个著名的问题,直到1837年,数学家才证明了“三等分任意角”是不能用尺规完成的.
在探索中,出现了不同的解决问题的方法
方法一:
如图(1),四边形ABCD是矩形,F是DA延长线上一点,G是CF上一点,CF与AB交于点E,且∠ACG=∠AGC,∠GAF=∠F,此时∠ECB=∠ACB.
方法二:
数学家帕普斯借助函数给出一种“三等分锐角”的方法(如图(2)):将给定的锐角∠AOB置于平面直角坐标系中,边OB在x轴上,边OA与函数y=的图象交于点P,以点P为圆心,以2OP长为半径作弧交图象于点R.过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连接OM得到∠AOB,过点P作PH⊥x轴于点H,过点R作RQ⊥PH于点Q,则∠MOB=
∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的长.
(2)完成“方法二”的证明.
19、在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示 Q(1, )是函数图象上的最低点 请仔细观察甲、乙两图,解答下列问题
(1)请直接写出AB边的长和BC边上的高AH的长;
(2)求∠B的度数;
(3)若△ABP为钝角三角形,求x的取值范围
20、在学习反比例函数后,小华在同一个平面直角坐标系中画出了(x>0)和
的图象,两个函数图象交于A(x1,y2),B(x2,y2)两点,在线段AB上选取一点P,过点P作y轴的平行线交反比例函数图象于点 O(如图1).在点P移动的过程中,发现PO 的长度随着点P的运动而变化.为了进一步研究 PO 的长度与点P的横坐标之间的关系,小华提出了下列问题∶
(1)设点P的横坐标为x,PQ的长度为y,则y与x之间的函数关系式为______(x1<x<x2);
(2)为了进一步的研究(1)中的函数关系,决定运用列表,描点,连线的方法绘制函数的图象;
①列表∶
x | 1 | 2 | 3 | 4 | ||||
y | 0 | m | 3 | n | 0 |
表中 m=______,n=______;
②描点∶根据上表中的数据,在图2中描出各点,
③连线∶请在图2中画出该函数的图象.观察函数图象,当x=______时,y的最大值为______;
(3)应用∶已知某矩形的一组邻边长分别为m,n,且该矩形的周长 W与n存在函数关系,求 m取最大值时矩形的对角线长.
21、已知矩形ABCD中,AF为∠DAC的角平分线,CP⊥AF于点F,且交AD的延长线于P.连接BF交对角线AC于点O.
(1)若BC=4,tan∠ACB= ,求
的值;
(2)求证:∠AOB=3∠PAF.
22、定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).
(1)请你根据“月牙线”的定义,设计一个开口向下.“月牙线”,直接写出两条抛物线的解析式;
(2)求M,N两点的坐标;
(3)在第三象限内的抛物线C1上是否存在一点P,使得△PAM的面积最大?若存在,求出△PAM的面积的最大值;若不存在,说明理由.
23、如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以 1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t秒.
(1)当 t 为何值时,△PBQ的面积等于 35cm2?
(2)当 t 为何值时,PQ的长度等8cm?
(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点 B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?
24、+(1﹣
)0+(
﹣
)(
+
)
邮箱: 联系方式: