1、计算的结果是( )
A.
B.
C.1
D.3
2、一辆汽车从地驶往
地,前
路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为
,在高速公路上行驶的速度为
,汽车从
地到
地一共行驶了
.设普通公路长、高速公路长分别为
,则可列方程组为( )
A.
B.
C.
D.
3、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=,则该圆锥的侧面积是( )
A. B.
C.
D.
4、-3的相反数是( )
A. 3 B. -3 C. D. -
5、已知二次函数的图像沿
轴平移后经过
,
两点若
,则图像可能
的平移方式是( ).
A. 向左平移单位 B. 向左平移
单位
C. 向右平移单位 D. 向右平移
单位
6、5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是( )
A. 20 B. 21 C. 22 D. 23
7、根据规划:北京大兴国际机场将实现东南亚、南亚等地区的航线网络搭建,布局欧洲、北美、东北亚、中东等重要国际枢纽航点,成为大型国际航空枢纽,年客流量达到
万人次.
万用科学记数法表示为( )
A. B.
C.
D.
8、如图,直线a∥b,CD⊥AB于点D,若∠1=36°,则∠2等于( )
A.54° B.126°
C.136° D.144°
9、的倒数是( )
A. B.
C.
D.
10、数据21,21,26,25,21,25,26,27的众数、中位数分别是( )
A.21,23
B.21,21
C.23,21
D.21,25
11、已知Rt△ABC中,∠ACB=90°,AC=BC,D为AB的中点,P为CD上一点,PC:PD=1:2,E在AC上、F在AB上,且∠EPF=135°,且若PE=2,则PF=_____________.
12、若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
13、习总书记提出“一带一路”的伟大构想以后,上海仅2015年12月对“一带一路”沿线国家和地区的投资就达到了92亿美元,其中92亿美元用科学记数法表示为_____美元.
14、如果分式的值为
,那么
的值是______.
15、一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为______.
16、计算:=____.
17、光明中学七年级举行了一次“我最喜爱的学科”主题班会,对全年级学生喜爱“语文、数学、英语、地理”四个学科情况,进行问卷调查(每人只能选1个学科),并将调查结果分别用图①和图②(不完整)表示.
(1)根据图中信息,求这次调查的学生总数;
(2)补全条形统计图,并求图①中圆心角∠AOB的度数.
18、某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,90%以后为D等级)
(1)抽取了 名学生成绩;
(2)请把频数分布直方图补充完整;
(3)扇形统计图中A等级所在的扇形的圆心角度数是 ;
(4)若测试总人数前90%为合格,该校初二年级有900名学生,求全年级生物合格的学生共约多少人.
19、如图,是直角三角形,
.
(1)动手操作:利用尺规作的平分线,交
于点O,再以O为圆心,
的长为半径作
(保留作图痕迹,不写作法);
(2)综合运用:请根据所作的图,若,求
的长.
20、如图,在菱形ABCD中,AD∥x轴,点A的坐标为(0,4),点B的坐标为(3,0).CD边所在直线y1=mx+n与x轴交于点C,与双曲线y2=(x<0)交于点D.
(1)求直线CD对应的函数解析式及k的值.
(2)当x<0时,使y1-y2≤0的自变量x的取值范围为 .
21、如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.
(1)求BC的长;
(2)求⊙O的半径.
22、某超市购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来40天的销售单价p(元/kg)与时间 t(天)之间的函数表达式为p=t+30;(1≤t≤40,t为整数),试销售当天(正式销售前一天)售出400kg,之后每天销售量比前一天减少5千克;
(1)试求每天销售利润W1(元)与时间t(天)之间的函数关系式;
(2)在销售前20天里,何时利润为4320元?
(3)为回馈新老顾客的支持,在实际销售中,超市决定每销售1kg水果就捐赠2元利润给“精准扶贫”对象.在日销售量不低于300kg的情况下,何时超市获利最多?
23、如图,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,AC∥BE,CE∥BD.
(1)求∠DBC的度数;
(2)求证:四边形OBEC是矩形.
24、在3×3的方格纸中,点A,B,C,D,E分别位于如图所示的小正方形格点上.
(1)在点A,B,C,D,E中任取四个点为顶点直接在图上画一个中心对称的四边形;
(2)从A,B,C三个点中先任取一个点,在余下的两个点中再取一个点,将所取的这两点与点D,E为顶点构成四边形,求所得四边形中面积为2的概率(用树状图或列表法求解).
邮箱: 联系方式: